Power Cartridges are pyrotechnic devices where hot combustion gases utilized to do mechanical work for disruption of suspected Improvised Explosive Devices(IEDs). It plays a vital role either in destroying the suspici...Power Cartridges are pyrotechnic devices where hot combustion gases utilized to do mechanical work for disruption of suspected Improvised Explosive Devices(IEDs). It plays a vital role either in destroying the suspicious object or making them non-functional by generating the gas pressure on burning of propellant against the water column inside the barrel, Present work is focused on characterisation,numerical solution such as deformation; strain; stress using FEM(Finite Element Method), design qualification, performance and evaluation of power cartridge for disruptor application. Experimental trials for pressure-time(P-t) measurement in closed vessel(CV), various electrical parameters like all fire current(AFC), no fire current(NFC) and ignition delay have been measured. Further, mechanical properties for brass material have been determined. An attempt has been made to characterise the power cartridge by FEM and carrying out the experiments for water-jet application.展开更多
The cytotoxicity of hydrophobic QDs CdS/CdSe was tested assigning MTT assay on Human Embryonic Kidney cells (HEK-293), breast cancer cells (MCF-7) and Enrichlish Ascitices Cells (EAC). Approximately 65% bio-toxicity w...The cytotoxicity of hydrophobic QDs CdS/CdSe was tested assigning MTT assay on Human Embryonic Kidney cells (HEK-293), breast cancer cells (MCF-7) and Enrichlish Ascitices Cells (EAC). Approximately 65% bio-toxicity was observed in MCF-7 for the core-shell QDs. These QDs may also find effective applications in other optoelectronic devices. CdS/CdSe core-shell hetrostructure quantum dots (QDs) were generated by chemical reaction between the respective chalcogens and cadmium metal salt. Sulphur powder was utilized for CdS core preparation while selenium was extracted from an organoselenium compound to impart CdSe shell layer at a temperature between 150℃ - 200℃. So-prepared core-shell QDs showed good optical properties. The particle size was found to be in the range of 3 - 4 nm with spherical morphology and cubic crystal structure.展开更多
文摘Power Cartridges are pyrotechnic devices where hot combustion gases utilized to do mechanical work for disruption of suspected Improvised Explosive Devices(IEDs). It plays a vital role either in destroying the suspicious object or making them non-functional by generating the gas pressure on burning of propellant against the water column inside the barrel, Present work is focused on characterisation,numerical solution such as deformation; strain; stress using FEM(Finite Element Method), design qualification, performance and evaluation of power cartridge for disruptor application. Experimental trials for pressure-time(P-t) measurement in closed vessel(CV), various electrical parameters like all fire current(AFC), no fire current(NFC) and ignition delay have been measured. Further, mechanical properties for brass material have been determined. An attempt has been made to characterise the power cartridge by FEM and carrying out the experiments for water-jet application.
文摘The cytotoxicity of hydrophobic QDs CdS/CdSe was tested assigning MTT assay on Human Embryonic Kidney cells (HEK-293), breast cancer cells (MCF-7) and Enrichlish Ascitices Cells (EAC). Approximately 65% bio-toxicity was observed in MCF-7 for the core-shell QDs. These QDs may also find effective applications in other optoelectronic devices. CdS/CdSe core-shell hetrostructure quantum dots (QDs) were generated by chemical reaction between the respective chalcogens and cadmium metal salt. Sulphur powder was utilized for CdS core preparation while selenium was extracted from an organoselenium compound to impart CdSe shell layer at a temperature between 150℃ - 200℃. So-prepared core-shell QDs showed good optical properties. The particle size was found to be in the range of 3 - 4 nm with spherical morphology and cubic crystal structure.