There is an ever-growing demand for lightweighting of steel for structural applications,particularly for automobile and transportation applications.It is mainly to improve the fuel efficiency,reduce the CO_(2) emissio...There is an ever-growing demand for lightweighting of steel for structural applications,particularly for automobile and transportation applications.It is mainly to improve the fuel efficiency,reduce the CO_(2) emissions and cater the increased passenger safety.Hence,the main focus is to reduce the density of the steel structure without affecting other properties.This can be achieved by down-gauging of the conventional steel by replacing the steel with higher strength,however,it is limited by dent resistance and stiffness.So,the novel idea is to reduce the density of the steel itself.It is well-known that addition of Al to steel reduces the density of the steel.About 1wt% of Al addition to steel can reduce the density by 1.3%,decreases the elastic modulus by 2% and it improves the strength by about 40 MPa.There is a new class of low-density/lightweight steel with addition of about 6-9 wt% Al to steel.Addition of higher than 9 wt%of Al in steel leads to embrittlement issues due to ordering and environmental effect.These disordered Fe-Al lightweight steels have raised considerable interest due to their low-density,high ductility,costeffectiveness and feasibility for bulk production.The low-density steels are envisaged in the development of an advanced lightweight ground transportation system,huge structures and also for certain defence applications and in thermal power plants.展开更多
High nitrogen stainless steel(HNS) is a nickel free austenitic stainless steel that is used as a structural component in defence applications for manufacturing battle tanks as a replacement of the existing armour grad...High nitrogen stainless steel(HNS) is a nickel free austenitic stainless steel that is used as a structural component in defence applications for manufacturing battle tanks as a replacement of the existing armour grade steel owing to its low cost, excellent mechanical properties and better corrosion resistance.Conventional fusion welding causes problems like nitrogen desorption, solidification cracking in weld zone, liquation cracking in heat affected zone, nitrogen induced porosity and poor mechanical properties.The above problems can be overcome by proper selection and procedure of joining process. In the present work, an attempt has been made to correlate the microstructural changes with mechanical properties of fusion and solid state welds of high nitrogen steel. Shielded metal arc welding(SMAW), gas tungsten arc welding(GTAW), electron beam welding(EBW) and friction stir welding(FSW) processes were used in the present work. Optical microscopy, scanning electron microscopy and electron backscatter diffraction were used to characterize microstructural changes. Hardness, tensile and bend tests were performed to evaluate the mechanical properties of welds. The results of the present investigation established that fully austenitic dendritic structure was found in welds of SMAW. Reverted austenite pools in the martensite matrix in weld zone and unmixed zones near the fusion boundary were observed in GTA welds. Discontinuous ferrite network in austenite matrix was observed in electron beam welds.Fine recrystallized austenite grain structure was observed in the nugget zone of friction stir welds.Improved mechanical properties are obtained in friction stir welds when compared to fusion welds. This is attributed to the refined microstructure consisting of equiaxed and homogenous austenite grains.展开更多
High strength aluminium alloy AA7075(Al-Zn-Mg-Cu) is a precipitate hardenable alloy widely used in the aerospace,defense,marine and automobile industries.Use of the heat treatable aluminium alloys in all these sectors...High strength aluminium alloy AA7075(Al-Zn-Mg-Cu) is a precipitate hardenable alloy widely used in the aerospace,defense,marine and automobile industries.Use of the heat treatable aluminium alloys in all these sectors is ever-increasing owing to their excellent strength-toweight ratio and reasonably good corrosion resistance.The shortage in corrosion resistance,however,usually poses negative concern about their reliability and lifetime when they service in the variable marine environments.These alloys also exhibit low weldability due to poor solidification microstructure,porosity in fusion zone and lose their mechanical properties when they are welded by fusion welding techniques.Friction stir welding(FSW) is a reliable technique to retain the properties of the alloy as the joining takes place in the solid state.The welds are susceptible to corrosion due to the microstructural changes in the weld nugget during FSW.In this work,the effect of post weld treatments,viz.,peak aging(T6) and retrogression & reaging(RRA),on the microstructure,mechanical properties and pitting corrosion has been studied.Friction stir welding of 8 mm-thick AA7075 alloy was carried out.The microstructural changes of base metal and nugget zone of friction stir welds were studied using optical microscopy,scanning electron microscopy and transmission electron microscopy.Tensile and hardness test of base metal and welds has been carried out.Pitting corrosion resistance was determined through dynamic polarization test.It was observed that the hardness and strength of weld were observed to be comparatively high in peak aged(T6) condition but the welds showed poor corrosion resistance.The resistance to pitting corrosion was improved and the mechanical properties were maintained by RRA treatment.The resistance to pitting corrosion was improved in RRA condition with the minimum loss of weld strength.展开更多
The present work pertains to the study on joining of AA6061 and AISI 4340 through continuous drive friction welding. The welds were evaluated by metallographic examination, X-ray diffraction, electron probe microanaly...The present work pertains to the study on joining of AA6061 and AISI 4340 through continuous drive friction welding. The welds were evaluated by metallographic examination, X-ray diffraction, electron probe microanalysis, tensile test and microhardness. The study reveals that the presence of an intermetallic compound layer at the bonded interface exhibits poor tensile strength and elongation. Mg in AA6061 near to the interface is found to be favourable for the formation and growth of Fe2Al5 intermetallics. Introduction of silver as an interlayer through electroplating on AISI 4340 resulted in accumulation of Si at weld interface, replacing Mg at AA6061 side, thereby reducing the width of intermetallic compound layer and correspondingly increasing the tensile strength. Presence of silver at the interface results in partial replacement of Fe-Al based intermetallic compounds with Ag-Al based compounds. The presence of these intermetallics was confirmed by X-ray diffraction technique. Since Ag-Al phases are ductile in nature, tensile strength is not deteriorated and the silicon segregation at weld interface on AA6061 in the joints with silver interlayer acts as diffusion barrier for Fe and further avoids formation of Fe-Al based intermetallics. A maximum tensile strength of 240 MPa along with 4.9% elongation was obtained for the silver interlayer dissimilar metal welds. The observed trends in tensile properties and hardness were explained in relation to the microstructure.展开更多
Hepatitis B virus(HBV)is one of the important global health problems today.Infection with HBV can lead to a variety of clinical manifestations including severe hepatic complications like liver cirrhosis and hepatocell...Hepatitis B virus(HBV)is one of the important global health problems today.Infection with HBV can lead to a variety of clinical manifestations including severe hepatic complications like liver cirrhosis and hepatocellular carcinoma.Presently,routine HBV screening and diagnosis is primarily based on the immuno-detection of HBV surface antigen(HBsAg).However,identification of HBV DNA positive cases,who do not have detectable HBsAg has greatly encouraged the use of nucleic acid amplification based assays,that are highly sensitive,specific and are to some extent tolerant to sequence variation.In the last few years,the field of HBV molecular diagnostics has evolved rapidly with advancements in the molecular biology tools,such as polymerase chain reaction(PCR)and real-time PCR.Recently,apart of PCR based amplification methods,a number of isothermal amplification assays,such as loop mediated isothermal amplification,transcription mediated amplification,ligase chain reaction,and rolling circle amplification have been utilized for HBV diag-nosis.These assays also offer options for real time detection and integration into biosensing devices.In this manuscript,we review the molecular technologies that are presently available for HBV diagnostics,with special emphasis on isothermal amplification based technologies.We have also included the recent trends in the development of biosensors and use of next generation sequencing technologies for HBV.展开更多
An artificial neural network(ANN) constitutive model and JohnsoneC ook(Je C) model were developed for 7017 aluminium alloy based on high strain rate data generated from split Hopkinson pressure bar(SHPB) experiments a...An artificial neural network(ANN) constitutive model and JohnsoneC ook(Je C) model were developed for 7017 aluminium alloy based on high strain rate data generated from split Hopkinson pressure bar(SHPB) experiments at various temperatures. A neural network configuration consists of both training and validation, which is effectively employed to predict flow stress. Temperature, strain rate and strain are considered as inputs, whereas flow stress is taken as output of the neural network. A comparative study on Johnsone Cook(Je C) model and neural network model was performed. It was observed that the developed neural network model could predict flow stress under various strain rates and temperatures. The experimental stressestrain data obtained from high strain rate compression tests using SHPB over a range of temperatures(25 e300 C), strains(0.05e0.3) and strain rates(1500e4500 s 1) were employed to formulate JeC model to predict the flow stress behaviour of 7017 aluminium alloy under high strain rate loading. The JeC model and the back-propagation ANN model were developed to predict the flow stress of 7017 aluminium alloy under high strain rates, and their predictability was evaluated in terms of correlation coefficient(R) and average absolute relative error(AARE). R and AARE for the J-C model are found to be 0.8461 and 10.624%, respectively, while R and AARE for the ANN model are 0.9995 and 2.58%, respectively. The predictions of ANN model are observed to be in consistent with the experimental data for all strain rates and temperatures.展开更多
The aluminium alloy AA2219(Al—Cu—Mg alloy) is widely used in the fabrication of lightweight structures with high strength-to-weight ratio and good corrosion resistance.Welding is main fabrication method of AA2219 al...The aluminium alloy AA2219(Al—Cu—Mg alloy) is widely used in the fabrication of lightweight structures with high strength-to-weight ratio and good corrosion resistance.Welding is main fabrication method of AA2219 alloy for manufacturing various engineering components.Friction stir welding(FSW) is a recently developed solid state welding process to overcome the problems encountered in fusion welding.This process uses a non-consumable tool to generate frictional heat on the abutting surfaces.The welding parameters,such as tool pin profile,rotational speed,welding speed and axial force,play major role in determining the microstructure and corrosion resistance of welded joint.The main objective of this work is to develop a mathematical model to predict the corrosion resistance of friction stir welded AA2219 aluminium alloy by incorporating FSW process parameters.In this work a central composite design with four factors and five levels has been used to minimize the experimental conditions.Dynamic polarization testing was carried out to determine critical pitting potential in millivolt,which is a criteria for measuring corrosion resistance and the data was used in model.Further the response surface method(RSM) was used to develop the model.The developed mathematical model was optimized using the simulated annealing algorithm optimizing technique to maximize the corrosion resistance of the friction stir welded AA2219 aluminium alloy joints.展开更多
The present work is aimed at studying the microstructure and pitting corrosion behaviour of shielded metal arc welded high nitrogen steel made of Cromang-N electrode. Basis for selecting this electrode is to increase ...The present work is aimed at studying the microstructure and pitting corrosion behaviour of shielded metal arc welded high nitrogen steel made of Cromang-N electrode. Basis for selecting this electrode is to increase the solubility of nitrogen in weld metal due to high chromium and manganese content. Microscopic studies were carried out using optical microscopy(OM) and field emission scanning electron microscopy(FESEM). Energy back scattered diffraction(EBSD) method was used to determine the phase analysis, grain size and orientation image mapping. Potentio-dynamic polarization testing was carried out to study the pitting corrosion resistance in aerated 3.5% NaCl environment using a GillAC electrochemical system. The investigation results showed that the selected Cr-Mn-N type electrode resulted in a maximum reduction in delta-ferrite and improvement in pitting corrosion resistance of the weld zone was attributed to the coarse austenite grains owing to the reduction in active sites of the austenite/delta ferrite interface and the decrease in galvanic interaction between austenite and delta-ferrite.展开更多
The heat treatable aluminum-copper alloy AA2014 finds wide application in the aerospace and defence industry due to its high strength-toweight ratio and good ductility. Friction stir welding(FSW) process, an emerging ...The heat treatable aluminum-copper alloy AA2014 finds wide application in the aerospace and defence industry due to its high strength-toweight ratio and good ductility. Friction stir welding(FSW) process, an emerging solid state joining process, is suitable for joining this alloy compared to fusion welding processes. This work presents the formulation of a mathematical model with process parameters and tool geometry to predict the responses of friction stir welds of AA 2014-T6 aluminum alloy, viz yield strength, tensile strength and ductility. The most influential process parameters considered are spindle speed, welding speed, tilt angle and tool pin profile. A four-factor, five-level central composite design was used and a response surface methodology(RSM) was employed to develop the regression models to predict the responses.The mechanical properties, such as yield strength(YS), ultimate tensile strength(UTS) and percentage elongation(%El), are considered as responses. Method of analysis of variance was used to determine the important process parameters that affect the responses. Validation trials were carried out to validate these results. These results indicate that the friction stir welds of AA 2014-T6 aluminum alloy welded with hexagonal tool pin profile have the highest tensile strength and elongation, whereas the joints fabricated with conical tool pin profile have the lowest tensile strength and elongation.展开更多
Industrial applications of aluminium and its alloys are restricted because of their poor tribological properties. Thermal spraying, laser surfacing, electron beam welding are the most widely used techniques to alter t...Industrial applications of aluminium and its alloys are restricted because of their poor tribological properties. Thermal spraying, laser surfacing, electron beam welding are the most widely used techniques to alter the surface morphology of base metal. Preliminary studies reveal that the coating and layering of aluminium alloys with ceramic particles enhance the ballistic resistance. Furthermore, among aluminium alloys,7075 aluminium alloy exhibits high strength which can be compared to that of steels and has profound applications in the designing of lightweight fortification structures and integrated protection systems. Having limitations such as poor bond integrity, formation of detrimental phases and interfacial reaction between reinforcement and substrate using fusion route to deposit hard particles paves the way to adopt friction stir processing for fabricating surface composites using different sizes of boron carbide particles as reinforcement on armour grade 7075 aluminium alloy as matrix in the present investigation. Wear and ballistic tests were carried out to assess the performance of friction stir processed AA7075 alloy. Significant improvement in wear resistance of friction stir processed surface composites is attributed to the change in wear mechanism from abrasion to adhesion. It has also been observed that the surface metal matrix composites have shown better ballistic resistance compared to the substrate AA7075 alloy. Addition of solid lubricant Mo S2 has reduced the depth of penetration of the projectile to half that of base metal AA7075 alloy. For the first time, the friction stir processing technique was successfully used to improve the wear and ballistic resistances of armour grade high strength AA7075 alloy.展开更多
AA2219 Ale Cu alloy is widely used in defence and aerospace applications due to required combination of high strength-to-weight ratio and toughness.Fabrication of components used for defence always involves welding.Ev...AA2219 Ale Cu alloy is widely used in defence and aerospace applications due to required combination of high strength-to-weight ratio and toughness.Fabrication of components used for defence always involves welding.Even though the mechanical properties of the base metal are better,but the alloy suffers from poor mechanical and corrosion properties during fusion welding.To overcome the problems of fusion welding,friction stir welding(FSW) is recognized as an alternative solid state joining method aimed to improve the mechanical and corrosion properties.Tool profile is one of the important variables which affect the performance of the friction stir weld.In the present work the effect of tool profile on the microstructure and pitting corrosion of AA2219 aluminiumecopper alloy was studied.Electron backscattered diffraction results established that the grain size and orientation of weld nugget of triangle profile is finer than that of conical profile.Differential scanning calorimetric results show the evidence of precipitate dissolution during FSW.It was found that the microstructure changes,such as grain size and its orientation precipitate dissolution during FSW influence the hardness and corrosion behaviour.Pitting corrosion resistance of friction stir welds of AA2219 was found to be better for triangle profile tool compared to conical profile which is attributed to material flow and strengthening precipitate morphology in various zones.Higher amount of heat generation during FSW made using triangle profile tool may be the reason for greater dissolution of strengthening precipitates in nugget zone and coarsening in thermo mechanically affected zone(TMAZ) and heat affected zone(HAZ).展开更多
Friction stir welding(FSW) of high strength aluminum alloys has been emerged as an alternative joining technique to avoid the problems during fusion welding.In recent times FSW is being used for armor grade AA7075 alu...Friction stir welding(FSW) of high strength aluminum alloys has been emerged as an alternative joining technique to avoid the problems during fusion welding.In recent times FSW is being used for armor grade AA7075 aluminum alloy in defense,aerospace and marine applications where it has to serve in non uniform loading and corrosive environments.Even though friction stir welds of AA7075 alloy possess better mechanical properties but suffer from poor corrosion resistance.The present work involves use of retrogression and reaging(RRA) post weld heat treatment to improve the corrosion resistance of welded joints of aluminum alloys.An attempt also has been made to change the chemical composition of the weld nugget by adding B4C nano particles with the aid of the FSW on a specially prepared base metal plate in butt position.The effects of peak aged condition(T6),RRA and addition of B4C nano particles on microstructure,hardness and pitting corrosion of nugget zone of the friction stir welds of AA7075 alloy have been studied.Even though RRA improved the pitting corrosion resistance,its hardness was slightly lost.Significant improvement in pitting corrosion resistance was achieved with addition of boron carbide powder and post weld heat treatment of RRA.展开更多
Low velocity impact experiments were carried out on E-glass/epoxy composite laminates having varying thicknesses at sub zero and elevated temperatures using hemi spherical steel impactor of 16 mm diameter with impact ...Low velocity impact experiments were carried out on E-glass/epoxy composite laminates having varying thicknesses at sub zero and elevated temperatures using hemi spherical steel impactor of 16 mm diameter with impact energies in the rage of 50-150 J.The performance of the laminates was assessed in terms of energy absorption,maximum displacement,peak force and failure behaviour.Results indicated that the effect of temperature on energy absorption of the laminate is negligible although the laminates are embrittling at sub zero temperatures.However it has influence on failure behaviour and displacement.Peak force has increased linearly with increase in laminate thickness from 5 to 10 mm.However it got reduced by 25% when temperature was increased from-20℃ to 100℃,Based on experimental results,laminate perforation energies were predicted using curve fitting equations.Statistical analysis was carried out using Taguchi method to identify the global effects of various parameters on laminate performance and confirmed that the laminate thickness has significant influence as compared to temperature,for the studied range.展开更多
Lactuca sativa, belonging to the Asteraceae family, is a leafy vegetable known for its medicinal properties. This study aimed to understand the mechanism of Lactuca sativa extract with respect to pharmacological actio...Lactuca sativa, belonging to the Asteraceae family, is a leafy vegetable known for its medicinal properties. This study aimed to understand the mechanism of Lactuca sativa extract with respect to pharmacological action. We investigated the anxiolytic effects of hydro-alcoholic extract of leaves of Lactuca sativa on mice. The behav- ioral tests performed on mice models to assess anti-anxiety properties were: open field test (OFT), elevated plus maze test (EPM), elevated T maze test, and marble burying test. Increased locomotor activity and time spent in the "open-ann" were observed in extract fed group. Malondialdehyde (MDA) and nitrite levels were decreased, cata- lase and glutathione levels were increased in Lactuca sativa treated mice. The data obtained in the present study suggests that the extract of Lactuca sativa can afford significant protection against anxiolytic activity.展开更多
Non-Hodgkin's lymphoma(NHL) is among the haematological malignancies with high prevalence worldwide, causing estimated 355 900 new cases and 191 400 deaths in 2008. High prevalence of NHL is documented in economic...Non-Hodgkin's lymphoma(NHL) is among the haematological malignancies with high prevalence worldwide, causing estimated 355 900 new cases and 191 400 deaths in 2008. High prevalence of NHL is documented in economically more developed areas while low prevalence is observed in less developed areas of the globe. A wide array of environmental factors have been reported to be either directly involved or in modifying the risk of NHL development. In addition to these factors, a number of infectious agents, chiefly viruses have also been implicated in the development of NHL. This article reviews the available literature to discuss the role of hepatitis viruses in NHL development, possible mechanisms of lymphomagenesis and also identify the areas in which further research is required to better understand this disease. A brief discussion on the clinical aspects such as classification, staging, treatment approaches have also been included in this article.展开更多
In this study,chlorogenic acid(CGA),a phenolic compound widely distributed in fruits and vegetables,was encapsulated into chitosan nanoparticles by ionic gelation method.The particles exhibited the size and zeta poten...In this study,chlorogenic acid(CGA),a phenolic compound widely distributed in fruits and vegetables,was encapsulated into chitosan nanoparticles by ionic gelation method.The particles exhibited the size and zeta potential of 210 nm and 33 mV respectively.A regular,spherical shaped distribution of nanoparticles was observed through scanning electron microscopy(SEM)and the success of entrapment was confirmed by FTIR analysis.The encapsulation efficiency of CGA was at about 59%with the loading efficiency of 5.2%.In vitro ABTS assay indicated that the radical scavenging activity of CAG was retained in the nanostructure and further,the release kinetics study revealed the burst release of 69%CGA from nanoparticles at the end of 100th hours.Pharmacokinetic analysis in rats showed a lower level of Cmax,longer Tmax,longer MRT,larger AUC0et and AUC0e∞for the CGA nanoparticles compared to free CGA.Collectively,these results suggest that the synthesised nanoparticle with sustained release property can therefore ease the fortification of food-matrices targeted for health benefits through effective delivery of CGA in body.展开更多
An artificial neural network(ANN) constitutive model is developed for high strength armor steel tempered at 500 C, 600 C and 650 C based on high strain rate data generated from split Hopkinson pressure bar(SHPB) exper...An artificial neural network(ANN) constitutive model is developed for high strength armor steel tempered at 500 C, 600 C and 650 C based on high strain rate data generated from split Hopkinson pressure bar(SHPB) experiments. A new neural network configuration consisting of both training and validation is effectively employed to predict flow stress. Tempering temperature, strain rate and strain are considered as inputs, whereas flow stress is taken as output of the neural network. A comparative study on Johnsone Cook(Je C) model and neural network model is performed. It was observed that the developed neural network model could predict flow stress under various strain rates and tempering temperatures. The experimental stressestrain data obtained from high strain rate compression tests using SHPB, over a range of tempering temperatures(500e650 C), strains(0.05e0.2) and strain rates(1000e5500/s) are employed to formulate Je C model to predict the high strain rate deformation behavior of high strength armor steels. The J-C model and the back-propagation ANN model were developed to predict the high strain rate deformation behavior of high strength armor steel and their predictability is evaluated in terms of correlation coefficient(R) and average absolute relative error(AARE). R and AARE for the Je C model are found to be 0.7461 and 27.624%, respectively, while R and AARE for the ANN model are 0.9995 and 2.58%, respectively. It was observed that the predictions by ANN model are in consistence with the experimental data for all tempering temperatures.展开更多
The objective of the present study is to develop cost effective thermoplastic hybrid laminate using Dyneema®HB50 and Tensylon®HSBD 30A through structural hybridization method.Laminates having 20 mm thickness...The objective of the present study is to develop cost effective thermoplastic hybrid laminate using Dyneema®HB50 and Tensylon®HSBD 30A through structural hybridization method.Laminates having 20 mm thickness were fabricated and subjected to 7.6239 mm mild steel core projectile with an impact velocity of 730±10 ms1.Parameters such as energy absorption,back face deformation and rate of back face deformation were measured as a function of hybridization ratio.It was observed that hybrid laminate with 50:50 ratio(w/w)of Tensylon®and Dyneema®with Tensylon®as front face showed 200%more energy absorption when compared to 100%Tensylon®laminate and showed equal energy absorption as that of expensive 100%Dyneema®laminate.Moreover,hybrid laminate with TD50:50 ratio showed 40%lower in terms of final back face deformation than Dyneema®laminate.Rate of back face deformation was also found to be slow for hybrid laminate as compared to Dyneema®laminate.Dynamic mechanical analysis showed that,Tensylon®laminate has got higher stiffness and lower damping factor than Dyneema®and hybrid laminates.The interface between Tensylon®and Dyneema®layers was found to be separating during the penetration process due to the poor interfacial bonding.Failure behaviour of laminates for different hybridization ratios were studied by sectioning the impacted laminates.It was observed that,the Tensylon®laminate has undergone shear cutting of fibers as major failure mode whereas the hybrid laminate showed shear cutting followed by tensile stretching,fiber pull out and delamination.These inputs are highly useful for body armour applications to design cost effective armour with enhanced performance.展开更多
Viruses are a cause of significant health problem world-wide, especially in the developing nations. Due to different anthropological activities, human populations are exposed to different viral pathogens, many of whic...Viruses are a cause of significant health problem world-wide, especially in the developing nations. Due to different anthropological activities, human populations are exposed to different viral pathogens, many of which emerge as outbreaks. In such situations, discovery of novel viruses is utmost important for deciding prevention and treatment strategies. Since last century, a number of different virus discovery methods, based on cell culture inoculation, sequence-independent PCR have been used for identification of a variety of viruses. However, the recent emergence and commercial availability of nextgeneration sequencers(NGS) has entirely changed the field of virus discovery. These massively parallel sequencing platforms can sequence a mixture of genetic materials from a very heterogeneous mix, with high sensitivity. Moreover, these platforms work in a sequenceindependent manner, making them ideal tools for virus discovery. However, for their application in clinics, sample preparation or enrichment is necessary to detect low abundance virus populations. A number of techniques have also been developed for enrichment or viral nucleic acids. In this manuscript, we review the evolution of sequencing; NGS technologies available today as well as widely used virus enrichment technologies. We also discuss the challenges associated with their applications in the clinical virus discovery.展开更多
The difficulty in fabricating the large size or complex shape limits the application of ZrB2-SiC composites. Joining them by fusion welding without or with preheating, controlled cooling under protective gas shield le...The difficulty in fabricating the large size or complex shape limits the application of ZrB2-SiC composites. Joining them by fusion welding without or with preheating, controlled cooling under protective gas shield leads to thermal shock failure or porosity at the weld interface. In the present work, a filler material of(ZrB2-SiC-B4C-YAG) composite with oxidation resistance and thermal shock resistance was produced in the form of welding wire. Using the filler, gas tungsten arc welding(GTAW) was performed without employing preheating, post controlled cooling and extraneous protective gas shield to join hot pressed ZrB2-SiC(ZS), and pressureless sintered ZrB2-SiC-B4C-YAG(ZSBY) composites to themselves. The fusion welding resulted in cracking and non-uniform joining without any filler material. The weld interfaces of the composites were very clean and coherent. The Vickers micro-hardness across the weld interface was found to increase due to the increase in the volume % of both SiC and B4C in the filler material. The shear strength of the weld was about 50% of the flextural strength of the parent composite.展开更多
文摘There is an ever-growing demand for lightweighting of steel for structural applications,particularly for automobile and transportation applications.It is mainly to improve the fuel efficiency,reduce the CO_(2) emissions and cater the increased passenger safety.Hence,the main focus is to reduce the density of the steel structure without affecting other properties.This can be achieved by down-gauging of the conventional steel by replacing the steel with higher strength,however,it is limited by dent resistance and stiffness.So,the novel idea is to reduce the density of the steel itself.It is well-known that addition of Al to steel reduces the density of the steel.About 1wt% of Al addition to steel can reduce the density by 1.3%,decreases the elastic modulus by 2% and it improves the strength by about 40 MPa.There is a new class of low-density/lightweight steel with addition of about 6-9 wt% Al to steel.Addition of higher than 9 wt%of Al in steel leads to embrittlement issues due to ordering and environmental effect.These disordered Fe-Al lightweight steels have raised considerable interest due to their low-density,high ductility,costeffectiveness and feasibility for bulk production.The low-density steels are envisaged in the development of an advanced lightweight ground transportation system,huge structures and also for certain defence applications and in thermal power plants.
文摘High nitrogen stainless steel(HNS) is a nickel free austenitic stainless steel that is used as a structural component in defence applications for manufacturing battle tanks as a replacement of the existing armour grade steel owing to its low cost, excellent mechanical properties and better corrosion resistance.Conventional fusion welding causes problems like nitrogen desorption, solidification cracking in weld zone, liquation cracking in heat affected zone, nitrogen induced porosity and poor mechanical properties.The above problems can be overcome by proper selection and procedure of joining process. In the present work, an attempt has been made to correlate the microstructural changes with mechanical properties of fusion and solid state welds of high nitrogen steel. Shielded metal arc welding(SMAW), gas tungsten arc welding(GTAW), electron beam welding(EBW) and friction stir welding(FSW) processes were used in the present work. Optical microscopy, scanning electron microscopy and electron backscatter diffraction were used to characterize microstructural changes. Hardness, tensile and bend tests were performed to evaluate the mechanical properties of welds. The results of the present investigation established that fully austenitic dendritic structure was found in welds of SMAW. Reverted austenite pools in the martensite matrix in weld zone and unmixed zones near the fusion boundary were observed in GTA welds. Discontinuous ferrite network in austenite matrix was observed in electron beam welds.Fine recrystallized austenite grain structure was observed in the nugget zone of friction stir welds.Improved mechanical properties are obtained in friction stir welds when compared to fusion welds. This is attributed to the refined microstructure consisting of equiaxed and homogenous austenite grains.
文摘High strength aluminium alloy AA7075(Al-Zn-Mg-Cu) is a precipitate hardenable alloy widely used in the aerospace,defense,marine and automobile industries.Use of the heat treatable aluminium alloys in all these sectors is ever-increasing owing to their excellent strength-toweight ratio and reasonably good corrosion resistance.The shortage in corrosion resistance,however,usually poses negative concern about their reliability and lifetime when they service in the variable marine environments.These alloys also exhibit low weldability due to poor solidification microstructure,porosity in fusion zone and lose their mechanical properties when they are welded by fusion welding techniques.Friction stir welding(FSW) is a reliable technique to retain the properties of the alloy as the joining takes place in the solid state.The welds are susceptible to corrosion due to the microstructural changes in the weld nugget during FSW.In this work,the effect of post weld treatments,viz.,peak aging(T6) and retrogression & reaging(RRA),on the microstructure,mechanical properties and pitting corrosion has been studied.Friction stir welding of 8 mm-thick AA7075 alloy was carried out.The microstructural changes of base metal and nugget zone of friction stir welds were studied using optical microscopy,scanning electron microscopy and transmission electron microscopy.Tensile and hardness test of base metal and welds has been carried out.Pitting corrosion resistance was determined through dynamic polarization test.It was observed that the hardness and strength of weld were observed to be comparatively high in peak aged(T6) condition but the welds showed poor corrosion resistance.The resistance to pitting corrosion was improved and the mechanical properties were maintained by RRA treatment.The resistance to pitting corrosion was improved in RRA condition with the minimum loss of weld strength.
基金Defence Research and Development Organization for the financial support
文摘The present work pertains to the study on joining of AA6061 and AISI 4340 through continuous drive friction welding. The welds were evaluated by metallographic examination, X-ray diffraction, electron probe microanalysis, tensile test and microhardness. The study reveals that the presence of an intermetallic compound layer at the bonded interface exhibits poor tensile strength and elongation. Mg in AA6061 near to the interface is found to be favourable for the formation and growth of Fe2Al5 intermetallics. Introduction of silver as an interlayer through electroplating on AISI 4340 resulted in accumulation of Si at weld interface, replacing Mg at AA6061 side, thereby reducing the width of intermetallic compound layer and correspondingly increasing the tensile strength. Presence of silver at the interface results in partial replacement of Fe-Al based intermetallic compounds with Ag-Al based compounds. The presence of these intermetallics was confirmed by X-ray diffraction technique. Since Ag-Al phases are ductile in nature, tensile strength is not deteriorated and the silicon segregation at weld interface on AA6061 in the joints with silver interlayer acts as diffusion barrier for Fe and further avoids formation of Fe-Al based intermetallics. A maximum tensile strength of 240 MPa along with 4.9% elongation was obtained for the silver interlayer dissimilar metal welds. The observed trends in tensile properties and hardness were explained in relation to the microstructure.
基金Supported by Defence Research and Development Organization,Ministry of Defence,Government of India
文摘Hepatitis B virus(HBV)is one of the important global health problems today.Infection with HBV can lead to a variety of clinical manifestations including severe hepatic complications like liver cirrhosis and hepatocellular carcinoma.Presently,routine HBV screening and diagnosis is primarily based on the immuno-detection of HBV surface antigen(HBsAg).However,identification of HBV DNA positive cases,who do not have detectable HBsAg has greatly encouraged the use of nucleic acid amplification based assays,that are highly sensitive,specific and are to some extent tolerant to sequence variation.In the last few years,the field of HBV molecular diagnostics has evolved rapidly with advancements in the molecular biology tools,such as polymerase chain reaction(PCR)and real-time PCR.Recently,apart of PCR based amplification methods,a number of isothermal amplification assays,such as loop mediated isothermal amplification,transcription mediated amplification,ligase chain reaction,and rolling circle amplification have been utilized for HBV diag-nosis.These assays also offer options for real time detection and integration into biosensing devices.In this manuscript,we review the molecular technologies that are presently available for HBV diagnostics,with special emphasis on isothermal amplification based technologies.We have also included the recent trends in the development of biosensors and use of next generation sequencing technologies for HBV.
基金Defence Research and Development Organization, India for financial help in carrying out the experiments
文摘An artificial neural network(ANN) constitutive model and JohnsoneC ook(Je C) model were developed for 7017 aluminium alloy based on high strain rate data generated from split Hopkinson pressure bar(SHPB) experiments at various temperatures. A neural network configuration consists of both training and validation, which is effectively employed to predict flow stress. Temperature, strain rate and strain are considered as inputs, whereas flow stress is taken as output of the neural network. A comparative study on Johnsone Cook(Je C) model and neural network model was performed. It was observed that the developed neural network model could predict flow stress under various strain rates and temperatures. The experimental stressestrain data obtained from high strain rate compression tests using SHPB over a range of temperatures(25 e300 C), strains(0.05e0.3) and strain rates(1500e4500 s 1) were employed to formulate JeC model to predict the flow stress behaviour of 7017 aluminium alloy under high strain rate loading. The JeC model and the back-propagation ANN model were developed to predict the flow stress of 7017 aluminium alloy under high strain rates, and their predictability was evaluated in terms of correlation coefficient(R) and average absolute relative error(AARE). R and AARE for the J-C model are found to be 0.8461 and 10.624%, respectively, while R and AARE for the ANN model are 0.9995 and 2.58%, respectively. The predictions of ANN model are observed to be in consistent with the experimental data for all strain rates and temperatures.
文摘The aluminium alloy AA2219(Al—Cu—Mg alloy) is widely used in the fabrication of lightweight structures with high strength-to-weight ratio and good corrosion resistance.Welding is main fabrication method of AA2219 alloy for manufacturing various engineering components.Friction stir welding(FSW) is a recently developed solid state welding process to overcome the problems encountered in fusion welding.This process uses a non-consumable tool to generate frictional heat on the abutting surfaces.The welding parameters,such as tool pin profile,rotational speed,welding speed and axial force,play major role in determining the microstructure and corrosion resistance of welded joint.The main objective of this work is to develop a mathematical model to predict the corrosion resistance of friction stir welded AA2219 aluminium alloy by incorporating FSW process parameters.In this work a central composite design with four factors and five levels has been used to minimize the experimental conditions.Dynamic polarization testing was carried out to determine critical pitting potential in millivolt,which is a criteria for measuring corrosion resistance and the data was used in model.Further the response surface method(RSM) was used to develop the model.The developed mathematical model was optimized using the simulated annealing algorithm optimizing technique to maximize the corrosion resistance of the friction stir welded AA2219 aluminium alloy joints.
文摘The present work is aimed at studying the microstructure and pitting corrosion behaviour of shielded metal arc welded high nitrogen steel made of Cromang-N electrode. Basis for selecting this electrode is to increase the solubility of nitrogen in weld metal due to high chromium and manganese content. Microscopic studies were carried out using optical microscopy(OM) and field emission scanning electron microscopy(FESEM). Energy back scattered diffraction(EBSD) method was used to determine the phase analysis, grain size and orientation image mapping. Potentio-dynamic polarization testing was carried out to study the pitting corrosion resistance in aerated 3.5% NaCl environment using a GillAC electrochemical system. The investigation results showed that the selected Cr-Mn-N type electrode resulted in a maximum reduction in delta-ferrite and improvement in pitting corrosion resistance of the weld zone was attributed to the coarse austenite grains owing to the reduction in active sites of the austenite/delta ferrite interface and the decrease in galvanic interaction between austenite and delta-ferrite.
基金Financial assistance from Defence Research and Development Organization(DRDO)
文摘The heat treatable aluminum-copper alloy AA2014 finds wide application in the aerospace and defence industry due to its high strength-toweight ratio and good ductility. Friction stir welding(FSW) process, an emerging solid state joining process, is suitable for joining this alloy compared to fusion welding processes. This work presents the formulation of a mathematical model with process parameters and tool geometry to predict the responses of friction stir welds of AA 2014-T6 aluminum alloy, viz yield strength, tensile strength and ductility. The most influential process parameters considered are spindle speed, welding speed, tilt angle and tool pin profile. A four-factor, five-level central composite design was used and a response surface methodology(RSM) was employed to develop the regression models to predict the responses.The mechanical properties, such as yield strength(YS), ultimate tensile strength(UTS) and percentage elongation(%El), are considered as responses. Method of analysis of variance was used to determine the important process parameters that affect the responses. Validation trials were carried out to validate these results. These results indicate that the friction stir welds of AA 2014-T6 aluminum alloy welded with hexagonal tool pin profile have the highest tensile strength and elongation, whereas the joints fabricated with conical tool pin profile have the lowest tensile strength and elongation.
基金Financial assistance from Armament Research Board, New Delhi, India
文摘Industrial applications of aluminium and its alloys are restricted because of their poor tribological properties. Thermal spraying, laser surfacing, electron beam welding are the most widely used techniques to alter the surface morphology of base metal. Preliminary studies reveal that the coating and layering of aluminium alloys with ceramic particles enhance the ballistic resistance. Furthermore, among aluminium alloys,7075 aluminium alloy exhibits high strength which can be compared to that of steels and has profound applications in the designing of lightweight fortification structures and integrated protection systems. Having limitations such as poor bond integrity, formation of detrimental phases and interfacial reaction between reinforcement and substrate using fusion route to deposit hard particles paves the way to adopt friction stir processing for fabricating surface composites using different sizes of boron carbide particles as reinforcement on armour grade 7075 aluminium alloy as matrix in the present investigation. Wear and ballistic tests were carried out to assess the performance of friction stir processed AA7075 alloy. Significant improvement in wear resistance of friction stir processed surface composites is attributed to the change in wear mechanism from abrasion to adhesion. It has also been observed that the surface metal matrix composites have shown better ballistic resistance compared to the substrate AA7075 alloy. Addition of solid lubricant Mo S2 has reduced the depth of penetration of the projectile to half that of base metal AA7075 alloy. For the first time, the friction stir processing technique was successfully used to improve the wear and ballistic resistances of armour grade high strength AA7075 alloy.
文摘AA2219 Ale Cu alloy is widely used in defence and aerospace applications due to required combination of high strength-to-weight ratio and toughness.Fabrication of components used for defence always involves welding.Even though the mechanical properties of the base metal are better,but the alloy suffers from poor mechanical and corrosion properties during fusion welding.To overcome the problems of fusion welding,friction stir welding(FSW) is recognized as an alternative solid state joining method aimed to improve the mechanical and corrosion properties.Tool profile is one of the important variables which affect the performance of the friction stir weld.In the present work the effect of tool profile on the microstructure and pitting corrosion of AA2219 aluminiumecopper alloy was studied.Electron backscattered diffraction results established that the grain size and orientation of weld nugget of triangle profile is finer than that of conical profile.Differential scanning calorimetric results show the evidence of precipitate dissolution during FSW.It was found that the microstructure changes,such as grain size and its orientation precipitate dissolution during FSW influence the hardness and corrosion behaviour.Pitting corrosion resistance of friction stir welds of AA2219 was found to be better for triangle profile tool compared to conical profile which is attributed to material flow and strengthening precipitate morphology in various zones.Higher amount of heat generation during FSW made using triangle profile tool may be the reason for greater dissolution of strengthening precipitates in nugget zone and coarsening in thermo mechanically affected zone(TMAZ) and heat affected zone(HAZ).
文摘Friction stir welding(FSW) of high strength aluminum alloys has been emerged as an alternative joining technique to avoid the problems during fusion welding.In recent times FSW is being used for armor grade AA7075 aluminum alloy in defense,aerospace and marine applications where it has to serve in non uniform loading and corrosive environments.Even though friction stir welds of AA7075 alloy possess better mechanical properties but suffer from poor corrosion resistance.The present work involves use of retrogression and reaging(RRA) post weld heat treatment to improve the corrosion resistance of welded joints of aluminum alloys.An attempt also has been made to change the chemical composition of the weld nugget by adding B4C nano particles with the aid of the FSW on a specially prepared base metal plate in butt position.The effects of peak aged condition(T6),RRA and addition of B4C nano particles on microstructure,hardness and pitting corrosion of nugget zone of the friction stir welds of AA7075 alloy have been studied.Even though RRA improved the pitting corrosion resistance,its hardness was slightly lost.Significant improvement in pitting corrosion resistance was achieved with addition of boron carbide powder and post weld heat treatment of RRA.
文摘Low velocity impact experiments were carried out on E-glass/epoxy composite laminates having varying thicknesses at sub zero and elevated temperatures using hemi spherical steel impactor of 16 mm diameter with impact energies in the rage of 50-150 J.The performance of the laminates was assessed in terms of energy absorption,maximum displacement,peak force and failure behaviour.Results indicated that the effect of temperature on energy absorption of the laminate is negligible although the laminates are embrittling at sub zero temperatures.However it has influence on failure behaviour and displacement.Peak force has increased linearly with increase in laminate thickness from 5 to 10 mm.However it got reduced by 25% when temperature was increased from-20℃ to 100℃,Based on experimental results,laminate perforation energies were predicted using curve fitting equations.Statistical analysis was carried out using Taguchi method to identify the global effects of various parameters on laminate performance and confirmed that the laminate thickness has significant influence as compared to temperature,for the studied range.
文摘Lactuca sativa, belonging to the Asteraceae family, is a leafy vegetable known for its medicinal properties. This study aimed to understand the mechanism of Lactuca sativa extract with respect to pharmacological action. We investigated the anxiolytic effects of hydro-alcoholic extract of leaves of Lactuca sativa on mice. The behav- ioral tests performed on mice models to assess anti-anxiety properties were: open field test (OFT), elevated plus maze test (EPM), elevated T maze test, and marble burying test. Increased locomotor activity and time spent in the "open-ann" were observed in extract fed group. Malondialdehyde (MDA) and nitrite levels were decreased, cata- lase and glutathione levels were increased in Lactuca sativa treated mice. The data obtained in the present study suggests that the extract of Lactuca sativa can afford significant protection against anxiolytic activity.
文摘Non-Hodgkin's lymphoma(NHL) is among the haematological malignancies with high prevalence worldwide, causing estimated 355 900 new cases and 191 400 deaths in 2008. High prevalence of NHL is documented in economically more developed areas while low prevalence is observed in less developed areas of the globe. A wide array of environmental factors have been reported to be either directly involved or in modifying the risk of NHL development. In addition to these factors, a number of infectious agents, chiefly viruses have also been implicated in the development of NHL. This article reviews the available literature to discuss the role of hepatitis viruses in NHL development, possible mechanisms of lymphomagenesis and also identify the areas in which further research is required to better understand this disease. A brief discussion on the clinical aspects such as classification, staging, treatment approaches have also been included in this article.
基金supported by DRDO,India.The authors are also thankful to the Director,DFRL,and Mysore for providing technical support and valuable suggestions.
文摘In this study,chlorogenic acid(CGA),a phenolic compound widely distributed in fruits and vegetables,was encapsulated into chitosan nanoparticles by ionic gelation method.The particles exhibited the size and zeta potential of 210 nm and 33 mV respectively.A regular,spherical shaped distribution of nanoparticles was observed through scanning electron microscopy(SEM)and the success of entrapment was confirmed by FTIR analysis.The encapsulation efficiency of CGA was at about 59%with the loading efficiency of 5.2%.In vitro ABTS assay indicated that the radical scavenging activity of CAG was retained in the nanostructure and further,the release kinetics study revealed the burst release of 69%CGA from nanoparticles at the end of 100th hours.Pharmacokinetic analysis in rats showed a lower level of Cmax,longer Tmax,longer MRT,larger AUC0et and AUC0e∞for the CGA nanoparticles compared to free CGA.Collectively,these results suggest that the synthesised nanoparticle with sustained release property can therefore ease the fortification of food-matrices targeted for health benefits through effective delivery of CGA in body.
文摘An artificial neural network(ANN) constitutive model is developed for high strength armor steel tempered at 500 C, 600 C and 650 C based on high strain rate data generated from split Hopkinson pressure bar(SHPB) experiments. A new neural network configuration consisting of both training and validation is effectively employed to predict flow stress. Tempering temperature, strain rate and strain are considered as inputs, whereas flow stress is taken as output of the neural network. A comparative study on Johnsone Cook(Je C) model and neural network model is performed. It was observed that the developed neural network model could predict flow stress under various strain rates and tempering temperatures. The experimental stressestrain data obtained from high strain rate compression tests using SHPB, over a range of tempering temperatures(500e650 C), strains(0.05e0.2) and strain rates(1000e5500/s) are employed to formulate Je C model to predict the high strain rate deformation behavior of high strength armor steels. The J-C model and the back-propagation ANN model were developed to predict the high strain rate deformation behavior of high strength armor steel and their predictability is evaluated in terms of correlation coefficient(R) and average absolute relative error(AARE). R and AARE for the Je C model are found to be 0.7461 and 27.624%, respectively, while R and AARE for the ANN model are 0.9995 and 2.58%, respectively. It was observed that the predictions by ANN model are in consistence with the experimental data for all tempering temperatures.
基金the support rendered by the staff of Armour Design and Development Division(ADDD).
文摘The objective of the present study is to develop cost effective thermoplastic hybrid laminate using Dyneema®HB50 and Tensylon®HSBD 30A through structural hybridization method.Laminates having 20 mm thickness were fabricated and subjected to 7.6239 mm mild steel core projectile with an impact velocity of 730±10 ms1.Parameters such as energy absorption,back face deformation and rate of back face deformation were measured as a function of hybridization ratio.It was observed that hybrid laminate with 50:50 ratio(w/w)of Tensylon®and Dyneema®with Tensylon®as front face showed 200%more energy absorption when compared to 100%Tensylon®laminate and showed equal energy absorption as that of expensive 100%Dyneema®laminate.Moreover,hybrid laminate with TD50:50 ratio showed 40%lower in terms of final back face deformation than Dyneema®laminate.Rate of back face deformation was also found to be slow for hybrid laminate as compared to Dyneema®laminate.Dynamic mechanical analysis showed that,Tensylon®laminate has got higher stiffness and lower damping factor than Dyneema®and hybrid laminates.The interface between Tensylon®and Dyneema®layers was found to be separating during the penetration process due to the poor interfacial bonding.Failure behaviour of laminates for different hybridization ratios were studied by sectioning the impacted laminates.It was observed that,the Tensylon®laminate has undergone shear cutting of fibers as major failure mode whereas the hybrid laminate showed shear cutting followed by tensile stretching,fiber pull out and delamination.These inputs are highly useful for body armour applications to design cost effective armour with enhanced performance.
基金Supported by The author’s laboratory is supported by the Defence Research and Development Organization(DRDO),Ministry of Defence,Government of India
文摘Viruses are a cause of significant health problem world-wide, especially in the developing nations. Due to different anthropological activities, human populations are exposed to different viral pathogens, many of which emerge as outbreaks. In such situations, discovery of novel viruses is utmost important for deciding prevention and treatment strategies. Since last century, a number of different virus discovery methods, based on cell culture inoculation, sequence-independent PCR have been used for identification of a variety of viruses. However, the recent emergence and commercial availability of nextgeneration sequencers(NGS) has entirely changed the field of virus discovery. These massively parallel sequencing platforms can sequence a mixture of genetic materials from a very heterogeneous mix, with high sensitivity. Moreover, these platforms work in a sequenceindependent manner, making them ideal tools for virus discovery. However, for their application in clinics, sample preparation or enrichment is necessary to detect low abundance virus populations. A number of techniques have also been developed for enrichment or viral nucleic acids. In this manuscript, we review the evolution of sequencing; NGS technologies available today as well as widely used virus enrichment technologies. We also discuss the challenges associated with their applications in the clinical virus discovery.
基金the financial support from the Defence Research and Development Organization,Ministry of Defence,Govt.of India,New Delhi in order to carry out the present study
文摘The difficulty in fabricating the large size or complex shape limits the application of ZrB2-SiC composites. Joining them by fusion welding without or with preheating, controlled cooling under protective gas shield leads to thermal shock failure or porosity at the weld interface. In the present work, a filler material of(ZrB2-SiC-B4C-YAG) composite with oxidation resistance and thermal shock resistance was produced in the form of welding wire. Using the filler, gas tungsten arc welding(GTAW) was performed without employing preheating, post controlled cooling and extraneous protective gas shield to join hot pressed ZrB2-SiC(ZS), and pressureless sintered ZrB2-SiC-B4C-YAG(ZSBY) composites to themselves. The fusion welding resulted in cracking and non-uniform joining without any filler material. The weld interfaces of the composites were very clean and coherent. The Vickers micro-hardness across the weld interface was found to increase due to the increase in the volume % of both SiC and B4C in the filler material. The shear strength of the weld was about 50% of the flextural strength of the parent composite.