Power electronics is an enabling technology for the development of environmental friendly fuel cell vehicles, and to implement the various vehicle electrical architectures to obtain the best performance. In this paper...Power electronics is an enabling technology for the development of environmental friendly fuel cell vehicles, and to implement the various vehicle electrical architectures to obtain the best performance. In this paper, power conversion strategies for propulsion and auxiliary power unit applications are described. The power electronics strategies for the successful development of the fuel cell vehicles are presented. The fuel cell systems for propulsion and for auxiliary power unit applications are also discussed.展开更多
Accurate model identification and fault detection are necessary for reliable motor control. Motor-characterizing parameters experience substantial changes due to aging, motor operating conditions, and faults. Conseque...Accurate model identification and fault detection are necessary for reliable motor control. Motor-characterizing parameters experience substantial changes due to aging, motor operating conditions, and faults. Consequently, motor parameters must be estimated accurately and reliably during operation. Based on enhanced model structures of electric motors that accommodate both normal and faulty modes, this paper introduces bias-corrected least-squares (LS) estimation algorithms that incorporate functions for correcting estimation bias, forgetting factors for capturing sudden faults, and recursive structures for efficient real-time implementation. Permanent magnet motors are used as a benchmark type for concrete algorithm development and evaluation. Algorithms are presented, their properties are established, and their accuracy and robustness are evaluated by simulation case studies under both normal operations and inter-turn winding faults. Implementation issues from different motor control schemes are also discussed.展开更多
文摘Power electronics is an enabling technology for the development of environmental friendly fuel cell vehicles, and to implement the various vehicle electrical architectures to obtain the best performance. In this paper, power conversion strategies for propulsion and auxiliary power unit applications are described. The power electronics strategies for the successful development of the fuel cell vehicles are presented. The fuel cell systems for propulsion and for auxiliary power unit applications are also discussed.
文摘Accurate model identification and fault detection are necessary for reliable motor control. Motor-characterizing parameters experience substantial changes due to aging, motor operating conditions, and faults. Consequently, motor parameters must be estimated accurately and reliably during operation. Based on enhanced model structures of electric motors that accommodate both normal and faulty modes, this paper introduces bias-corrected least-squares (LS) estimation algorithms that incorporate functions for correcting estimation bias, forgetting factors for capturing sudden faults, and recursive structures for efficient real-time implementation. Permanent magnet motors are used as a benchmark type for concrete algorithm development and evaluation. Algorithms are presented, their properties are established, and their accuracy and robustness are evaluated by simulation case studies under both normal operations and inter-turn winding faults. Implementation issues from different motor control schemes are also discussed.