In this article, we consider the Parabolic Anderson Model with constant initial condition, driven by a space-time homogeneous Gaussian noise, with general covariance function in time and spatial spectral measure satis...In this article, we consider the Parabolic Anderson Model with constant initial condition, driven by a space-time homogeneous Gaussian noise, with general covariance function in time and spatial spectral measure satisfying Dalang’s condition. First, we prove that the solution(in the Skorohod sense) exists and is continuous in L^p(?). Then, we show that the solution has a modification whose sample paths are H?lder continuous in space and time,under the minimal condition on the spatial spectral measure of the noise(which is the same as the condition encountered in the case of the white noise in time). This improves similar results which were obtained in [6, 10] under more restrictive conditions, and with sub-optimal exponents for H?lder continuity.展开更多
We provide necessary conditions in order that the Hamiltonian systems with Hamiltonian ,?and one of the following potentials ?are integrable in the Liouville sense.
We study the periodic solutions of the second-order differential equations of the form where the functions, , and are periodic of period in the variable t.
Consider the polynomial differential system of degree m of the form x=-y(1+μ(a_(2)x-a_(1)y))+x(v(a_(1)x+a_(2)y)+Ω_(m-1)(x,y)),y=x(1+μ(a_(2)x-a_(1)y))+y(v(a_(1)x+a_(2)y)+Ω_(m-1)(x,y)),whereμandνare real numbers s...Consider the polynomial differential system of degree m of the form x=-y(1+μ(a_(2)x-a_(1)y))+x(v(a_(1)x+a_(2)y)+Ω_(m-1)(x,y)),y=x(1+μ(a_(2)x-a_(1)y))+y(v(a_(1)x+a_(2)y)+Ω_(m-1)(x,y)),whereμandνare real numbers such that(μ^(2)+v^(2))(μ+v(m-2))(a_(1)^(2)+a_(2)^(2))≠m>2 andΩ_(m−1)(x,y)is a homogenous polynomial of degree m−1.A conjecture,stated in J.Differential Equations 2019,suggests that whenν=1,this differential system has a weak center at the origin if and only if after a convenient linear change of variable(x,y)→(X,Y)the system is invariant under the transformation(X,Y,t)→(−X,Y,−t).For every degree m we prove the extension of this conjecture to any value ofνexcept for a finite set of values ofμ.展开更多
We characterize the Liouvillian and analytic integrability of the quadratic polynomial vector fields in R2 having an invariant ellipse.More precisely,a quadratic system having an invariant ellipse can be written into ...We characterize the Liouvillian and analytic integrability of the quadratic polynomial vector fields in R2 having an invariant ellipse.More precisely,a quadratic system having an invariant ellipse can be written into the form x=x2+y2-1+y(ax+by+c),y=x(ax+by+c),and the ellipse becomes x2+y2=1.We prove that(i) this quadratic system is analytic integrable if and only if a=0;(ii) if x2+y2=1 is a periodic orbit,then this quadratic system is Liouvillian integrable if and only if x2+y2=1 is not a limit cycle;and(iii) if x2+y2=1 is not a periodic orbit,then this quadratic system is Liouvilian integrable if and only if a=0.展开更多
This paper deals with the existence of Darboux first integrals for the planar polynomial differential systems x=x-y+P n+1(x,y)+xF2n(x,y),y=x+y+Q n+1(x,y)+yF2n(x,y),where P i(x,y),Q i(x,y)and F i(x,y)are homogeneous po...This paper deals with the existence of Darboux first integrals for the planar polynomial differential systems x=x-y+P n+1(x,y)+xF2n(x,y),y=x+y+Q n+1(x,y)+yF2n(x,y),where P i(x,y),Q i(x,y)and F i(x,y)are homogeneous polynomials of degree i.Within this class,we identify some new Darboux integrable systems having either a focus or a center at the origin.For such Darboux integrable systems having degrees 5and 9 we give the explicit expressions of their algebraic limit cycles.For the systems having degrees 3,5,7 and 9and restricted to a certain subclass we present necessary and sufficient conditions for being Darboux integrable.展开更多
We provide sufficient conditions for the existence of periodic orbits of some systems of delay differential equations with a unique delay. We extend Kaplan-Yorke's method for finding periodic orbits from a delay diff...We provide sufficient conditions for the existence of periodic orbits of some systems of delay differential equations with a unique delay. We extend Kaplan-Yorke's method for finding periodic orbits from a delay differential equation with several delays to a system of delay differential equations with a unique delay.展开更多
基金supported by a grant from the Natural Sciences and Engineering Research Council of Canadasupported by the grant MTM2015-67802P
文摘In this article, we consider the Parabolic Anderson Model with constant initial condition, driven by a space-time homogeneous Gaussian noise, with general covariance function in time and spatial spectral measure satisfying Dalang’s condition. First, we prove that the solution(in the Skorohod sense) exists and is continuous in L^p(?). Then, we show that the solution has a modification whose sample paths are H?lder continuous in space and time,under the minimal condition on the spatial spectral measure of the noise(which is the same as the condition encountered in the case of the white noise in time). This improves similar results which were obtained in [6, 10] under more restrictive conditions, and with sub-optimal exponents for H?lder continuity.
文摘We provide necessary conditions in order that the Hamiltonian systems with Hamiltonian ,?and one of the following potentials ?are integrable in the Liouville sense.
文摘We study the periodic solutions of the second-order differential equations of the form where the functions, , and are periodic of period in the variable t.
基金Supported by Grant NNSF of China(Grant No.12171491)the Ministerio de Ciencia,Innovación y Universidades,Agencia Estatal de Investigación grants MTM2016-77278-P(FEDER)and PID2019-104658GB-I00(FEDER)+1 种基金the Agència de Gestiód’Ajuts Universitaris i de Recerca grant 2017SGR1617the H2020 European Research Council grant MSCA-RISE-2017-777911。
文摘Consider the polynomial differential system of degree m of the form x=-y(1+μ(a_(2)x-a_(1)y))+x(v(a_(1)x+a_(2)y)+Ω_(m-1)(x,y)),y=x(1+μ(a_(2)x-a_(1)y))+y(v(a_(1)x+a_(2)y)+Ω_(m-1)(x,y)),whereμandνare real numbers such that(μ^(2)+v^(2))(μ+v(m-2))(a_(1)^(2)+a_(2)^(2))≠m>2 andΩ_(m−1)(x,y)is a homogenous polynomial of degree m−1.A conjecture,stated in J.Differential Equations 2019,suggests that whenν=1,this differential system has a weak center at the origin if and only if after a convenient linear change of variable(x,y)→(X,Y)the system is invariant under the transformation(X,Y,t)→(−X,Y,−t).For every degree m we prove the extension of this conjecture to any value ofνexcept for a finite set of values ofμ.
基金partially supported by the MINECO/FEDER(Grant No.MTM2008–03437)AGAUR(Grant No.2009SGR-410)+1 种基金ICREA Academia and FP7-PEOPLE-2012-IRSES 316338 and 318999supported by Portuguese National Funds through FCT-Fundao para a Ciência e a Tecnologia within the project PTDC/MAT/117106/2010 and by CAMGSD
文摘We characterize the Liouvillian and analytic integrability of the quadratic polynomial vector fields in R2 having an invariant ellipse.More precisely,a quadratic system having an invariant ellipse can be written into the form x=x2+y2-1+y(ax+by+c),y=x(ax+by+c),and the ellipse becomes x2+y2=1.We prove that(i) this quadratic system is analytic integrable if and only if a=0;(ii) if x2+y2=1 is a periodic orbit,then this quadratic system is Liouvillian integrable if and only if x2+y2=1 is not a limit cycle;and(iii) if x2+y2=1 is not a periodic orbit,then this quadratic system is Liouvilian integrable if and only if a=0.
基金广州市科技计划(批准号:201707010426和20180401350)广东省自然科学基金(批准号:2017A030313010)+3 种基金the Ministry of Economy and Competitiveness(批准号:MTM 2016-77278-P)Agencia de Gestio d’Ajuts Universitaris i de Recerca(批准号:2017SGR1617)the European project(批准号:Dynamics-H2020-MSCA-RISE-2017-777911)Barcelona Graduate School of Mathematics(批准号:MDM-2014-0445)资助项目
基金supported by National Natural Science Foundation of China (Grant No. 11271252)Ministerio de Economiay Competitidad of Spain (Grant No. MTM2008-03437)+2 种基金 Agència de Gestió d’Ajuts Universitaris i de Recerca of Catalonia (Grant No. 2009SGR410)ICREA Academia,Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20110073110054)a Marie Curie International Research Staff Exchange Scheme Fellowship within the 7th European Community Framework Programme (Grant Nos. FP7-PEOPLE-2012-IRSES-316338 and 318999)
文摘This paper deals with the existence of Darboux first integrals for the planar polynomial differential systems x=x-y+P n+1(x,y)+xF2n(x,y),y=x+y+Q n+1(x,y)+yF2n(x,y),where P i(x,y),Q i(x,y)and F i(x,y)are homogeneous polynomials of degree i.Within this class,we identify some new Darboux integrable systems having either a focus or a center at the origin.For such Darboux integrable systems having degrees 5and 9 we give the explicit expressions of their algebraic limit cycles.For the systems having degrees 3,5,7 and 9and restricted to a certain subclass we present necessary and sufficient conditions for being Darboux integrable.
基金MCYT/FEDER Grant No.MTM2005-06098-C02-01a CICYT Grant No.2005SGR 00550a Marie Curie Grant No.HPMT-CT-2001-00247
文摘We provide sufficient conditions for the existence of periodic orbits of some systems of delay differential equations with a unique delay. We extend Kaplan-Yorke's method for finding periodic orbits from a delay differential equation with several delays to a system of delay differential equations with a unique delay.