期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
H?LDER CONTINUITY FOR THE PARABOLIC ANDERSON MODEL WITH SPACE-TIME HOMOGENEOUS GAUSSIAN NOISE 被引量:1
1
作者 Raluca M BALAN Lluís QUER-SARDANYONS Jian SONG 《Acta Mathematica Scientia》 SCIE CSCD 2019年第3期717-730,共14页
In this article, we consider the Parabolic Anderson Model with constant initial condition, driven by a space-time homogeneous Gaussian noise, with general covariance function in time and spatial spectral measure satis... In this article, we consider the Parabolic Anderson Model with constant initial condition, driven by a space-time homogeneous Gaussian noise, with general covariance function in time and spatial spectral measure satisfying Dalang’s condition. First, we prove that the solution(in the Skorohod sense) exists and is continuous in L^p(?). Then, we show that the solution has a modification whose sample paths are H?lder continuous in space and time,under the minimal condition on the spatial spectral measure of the noise(which is the same as the condition encountered in the case of the white noise in time). This improves similar results which were obtained in [6, 10] under more restrictive conditions, and with sub-optimal exponents for H?lder continuity. 展开更多
关键词 GAUSSIAN noise stochastic partial differential equations Malliavin CALCULUS
下载PDF
Integrability of Hamiltonian Systems with Two Degrees of Freedom and Homogenous Potential of Degree Zero
2
作者 Jaume Llibre Claudia Valls 《Journal of Applied Mathematics and Physics》 2018年第11期2192-2201,共10页
We provide necessary conditions in order that the Hamiltonian systems with Hamiltonian ,?and one of the following potentials ?are integrable in the Liouville sense.
关键词 Hamiltonian System LIOUVILLE INTEGRABILITY DARBOUX Points Homogeneous Potentials of DEGREE ZERO
下载PDF
Periodic Solutions of a Class of Second-Order Differential Equation
3
作者 Zeyneb Bouderbala Jaume Llibre Amar Makhlouf 《Applied Mathematics》 2016年第3期227-232,共6页
We study the periodic solutions of the second-order differential equations of the form where the functions, , and are periodic of period in the variable t.
关键词 Periodic Solution Differential Equation Averaging Theory
下载PDF
Solution of the Center Problem for a Class of Polynomial Differential Systems
4
作者 Chang Jian Liu Jaume Llibre +1 位作者 Rafael Ramírez Valentín Ramírez 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2024年第7期1685-1696,共12页
Consider the polynomial differential system of degree m of the form x=-y(1+μ(a_(2)x-a_(1)y))+x(v(a_(1)x+a_(2)y)+Ω_(m-1)(x,y)),y=x(1+μ(a_(2)x-a_(1)y))+y(v(a_(1)x+a_(2)y)+Ω_(m-1)(x,y)),whereμandνare real numbers s... Consider the polynomial differential system of degree m of the form x=-y(1+μ(a_(2)x-a_(1)y))+x(v(a_(1)x+a_(2)y)+Ω_(m-1)(x,y)),y=x(1+μ(a_(2)x-a_(1)y))+y(v(a_(1)x+a_(2)y)+Ω_(m-1)(x,y)),whereμandνare real numbers such that(μ^(2)+v^(2))(μ+v(m-2))(a_(1)^(2)+a_(2)^(2))≠m>2 andΩ_(m−1)(x,y)is a homogenous polynomial of degree m−1.A conjecture,stated in J.Differential Equations 2019,suggests that whenν=1,this differential system has a weak center at the origin if and only if after a convenient linear change of variable(x,y)→(X,Y)the system is invariant under the transformation(X,Y,t)→(−X,Y,−t).For every degree m we prove the extension of this conjecture to any value ofνexcept for a finite set of values ofμ. 展开更多
关键词 Center problem polynomial differential system
原文传递
Liouvillian and Analytic Integrability of the Quadratic Vector Fields Having an Invariant Ellipse 被引量:2
5
作者 Jaume LLIBRE Claudia VALLS 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2014年第3期453-466,共14页
We characterize the Liouvillian and analytic integrability of the quadratic polynomial vector fields in R2 having an invariant ellipse.More precisely,a quadratic system having an invariant ellipse can be written into ... We characterize the Liouvillian and analytic integrability of the quadratic polynomial vector fields in R2 having an invariant ellipse.More precisely,a quadratic system having an invariant ellipse can be written into the form x=x2+y2-1+y(ax+by+c),y=x(ax+by+c),and the ellipse becomes x2+y2=1.We prove that(i) this quadratic system is analytic integrable if and only if a=0;(ii) if x2+y2=1 is a periodic orbit,then this quadratic system is Liouvillian integrable if and only if x2+y2=1 is not a limit cycle;and(iii) if x2+y2=1 is not a periodic orbit,then this quadratic system is Liouvilian integrable if and only if a=0. 展开更多
关键词 Liouvillian integrability quadratic planar polynomial vector fields invariant ellipse
原文传递
一类pitchfork分支的全局相图 被引量:1
6
作者 李时敏 Jaume Llibre 《中国科学:数学》 CSCD 北大核心 2019年第9期1201-1208,共8页
本文研究二次微分系统dt/dr=y^2?y?x,dy/dt=x^2?μx?y,其中μ∈R.该系统是刻画pitchfork分支的重要例子.本文给出该系统在Poincare圆盘上的全局相图。
关键词 相图 pitchfork分支 Poincaré紧致化
原文传递
Darboux integrability and algebraic limit cycles for a class of polynomial differential systems
7
作者 CAO JinLong LLIBRE Jaume ZHANG Xiang 《Science China Mathematics》 SCIE 2014年第4期775-794,共20页
This paper deals with the existence of Darboux first integrals for the planar polynomial differential systems x=x-y+P n+1(x,y)+xF2n(x,y),y=x+y+Q n+1(x,y)+yF2n(x,y),where P i(x,y),Q i(x,y)and F i(x,y)are homogeneous po... This paper deals with the existence of Darboux first integrals for the planar polynomial differential systems x=x-y+P n+1(x,y)+xF2n(x,y),y=x+y+Q n+1(x,y)+yF2n(x,y),where P i(x,y),Q i(x,y)and F i(x,y)are homogeneous polynomials of degree i.Within this class,we identify some new Darboux integrable systems having either a focus or a center at the origin.For such Darboux integrable systems having degrees 5and 9 we give the explicit expressions of their algebraic limit cycles.For the systems having degrees 3,5,7 and 9and restricted to a certain subclass we present necessary and sufficient conditions for being Darboux integrable. 展开更多
关键词 Darboux first integral algebraic limit cycles Abel differential equation
原文传递
Periodic Orbits for Some Systems of Delay Differential Equations
8
作者 Jaume LLIBRE Alexandrina-Alina TAR■A 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2008年第2期267-274,共8页
We provide sufficient conditions for the existence of periodic orbits of some systems of delay differential equations with a unique delay. We extend Kaplan-Yorke's method for finding periodic orbits from a delay diff... We provide sufficient conditions for the existence of periodic orbits of some systems of delay differential equations with a unique delay. We extend Kaplan-Yorke's method for finding periodic orbits from a delay differential equation with several delays to a system of delay differential equations with a unique delay. 展开更多
关键词 delay differential system periodic orbit
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部