Sufficient conditions are given to assert that two C1-mappings share only one value in a connected compact Banach manifold modelled over Rn. The proof of the result, which is based upon continuation methods, is constr...Sufficient conditions are given to assert that two C1-mappings share only one value in a connected compact Banach manifold modelled over Rn. The proof of the result, which is based upon continuation methods, is constructive.展开更多
Let f : S(E) → S(B) be a surjective isometry between the unit spheres of two weakly compact JB*-triples not containing direct summands of rank less than or equal to 3. Suppose E has rank greater than or equal to 5. A...Let f : S(E) → S(B) be a surjective isometry between the unit spheres of two weakly compact JB*-triples not containing direct summands of rank less than or equal to 3. Suppose E has rank greater than or equal to 5. Applying techniques developed in JB*-triple theory, we prove that f admits an extension to a surjective real linear isometry T : E → B. Among the consequences, we show that every surjective isometry between the unit spheres of two compact C*-algebras A and B, without assuming any restriction on the rank of their direct summands(and in particular when A = K(H) and B = K(H′)), extends to a surjective real linear isometry from A into B. These results provide new examples of infinite-dimensional Banach spaces where Tingley's problem admits a positive answer.展开更多
基金partially supported by D.G.E.S.Pb96-1338-CO 2-01 and the Junta de Andalucia
文摘Sufficient conditions are given to assert that two C1-mappings share only one value in a connected compact Banach manifold modelled over Rn. The proof of the result, which is based upon continuation methods, is constructive.
基金supported by the Spanish Ministry of Economy and Competitiveness and European Regional Development Fund (Grant No. MTM2014-58984-P)Junta de Andalucía (Grant No. FQM375)+1 种基金Grants-in-Aid for Scientific Research (Grant No. 16J01162)Japan Society for the Promotion of Science
文摘Let f : S(E) → S(B) be a surjective isometry between the unit spheres of two weakly compact JB*-triples not containing direct summands of rank less than or equal to 3. Suppose E has rank greater than or equal to 5. Applying techniques developed in JB*-triple theory, we prove that f admits an extension to a surjective real linear isometry T : E → B. Among the consequences, we show that every surjective isometry between the unit spheres of two compact C*-algebras A and B, without assuming any restriction on the rank of their direct summands(and in particular when A = K(H) and B = K(H′)), extends to a surjective real linear isometry from A into B. These results provide new examples of infinite-dimensional Banach spaces where Tingley's problem admits a positive answer.