The relativistic mean-field models tested in previous works against nuclear matter experimental values,critical parameters and macroscopic stellar properties are revisited and used in the evaluation of the symmetry en...The relativistic mean-field models tested in previous works against nuclear matter experimental values,critical parameters and macroscopic stellar properties are revisited and used in the evaluation of the symmetry energyγ parameter obtained in three different ways. We have checked that, independent of the choice made to calculate theγ values, a trend of linear correlation is observed between γ and the symmetry energy(S0) and a more clear linear relationship is established between γ and the slope of the symmetry energy(L0). These results directly contribute to the arising of other linear correlations between γ and the neutron star radii of R(1.0) and R(1.4), in agreement with recent findings. Finally, we have found that short-range correlations induce two specific parametrizations, namely,IU-FSU and DD-MEδ, simultaneously compatible with the neutron star mass constraint of 1.93≤M(max)/M☉≤2.05 and with the overlap band for the L0 ×S0 region, to present γ in the range of γ=0.25±0.05.展开更多
The Basidiomycota constitutes a major phylum of the kingdom Fungi and is second in species numbers to the Ascomycota.The present work provides an overview of all validly published,currently used basidiomycete genera t...The Basidiomycota constitutes a major phylum of the kingdom Fungi and is second in species numbers to the Ascomycota.The present work provides an overview of all validly published,currently used basidiomycete genera to date in a single document.An outline of all genera of Basidiomycota is provided,which includes 1928 currently used genera names,with 1263 synonyms,which are distributed in 241 families,68 orders,18 classes and four subphyla.We provide brief notes for each accepted genus including information on classification,number of accepted species,type species,life mode,habitat,distribution,and sequence information.Furthermore,three phylogenetic analyses with combined LSU,SSU,5.8s,rpb1,rpb2,and ef1 datasets for the subphyla Agaricomycotina,Pucciniomycotina and Ustilaginomycotina are conducted,respectively.Divergence time estimates are provided to the family level with 632 species from 62 orders,168 families and 605 genera.Our study indicates that the divergence times of the subphyla in Basidiomycota are 406-430 Mya,classes are 211-383 Mya,and orders are 99-323 Mya,which are largely consistent with previous studies.In this study,all phylogenetically supported families were dated,with the families of Agaricomycotina diverging from 27-178 Mya,Pucciniomycotina from 85-222 Mya,and Ustilaginomycotina from 79-177 Mya.Divergence times as additional criterion in ranking provide additional evidence to resolve taxonomic problems in the Basidiomycota taxonomic system,and also provide a better understanding of their phylogeny and evolution.展开更多
基金a part of the project INCT-FNA Proc.No.464898/2014-5partially supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico(CNPq)+2 种基金Brazil under grants 300602/2009-0 and 306786/2014-1support from the Israel Science Foundationthe U.S.Department of Energy Office of Science,Office of Nuclear Physics program under award number DE-FG02-94ER40818
文摘The relativistic mean-field models tested in previous works against nuclear matter experimental values,critical parameters and macroscopic stellar properties are revisited and used in the evaluation of the symmetry energyγ parameter obtained in three different ways. We have checked that, independent of the choice made to calculate theγ values, a trend of linear correlation is observed between γ and the symmetry energy(S0) and a more clear linear relationship is established between γ and the slope of the symmetry energy(L0). These results directly contribute to the arising of other linear correlations between γ and the neutron star radii of R(1.0) and R(1.4), in agreement with recent findings. Finally, we have found that short-range correlations induce two specific parametrizations, namely,IU-FSU and DD-MEδ, simultaneously compatible with the neutron star mass constraint of 1.93≤M(max)/M☉≤2.05 and with the overlap band for the L0 ×S0 region, to present γ in the range of γ=0.25±0.05.
基金National Key R&D Program of China(Project No.2018YFD0400200)the National Natural Science Foundation of China(Project IDs:31470152,31360014 and 31970010)+20 种基金Beijing Innovative Consortium of Agriculture Research System(Project ID:BAIC05-2019)the Thailand Research funds for grant RDG6130001 entitled"Impact of climate change on fungal diversity and biogeography in the Greater Mekong Subregion"Thailand Science Research and Innovation fund for the grant DBG6280009 entitled Macrofungi diversity research from the Lancang-Mekong Watershed and surrounding areasCroatian Science Foundation for support under the project For FungiDNA(IP-2018-01-1736)the support provided by the Moravian Museum by the Ministry of Culture of the Czech Republic as part of its long-term conceptual development programme for research institutions[Grant Number DKRVO,Ref.MK000094862]National Natural Science Foundation of China(31270072)the Special Funds for the Young Scholars of Taxonomy of the Chinese Academy of Sciences(ZSBR-001)National Key Basic Research Special Foundation of China(2013FY110400)support from the Department of Science&Technology(DST),New Delhi,Indiain the form of a DST-Inspire Faculty Fellowship(DST/INSPIRE/04/2018/001906,dated 24 July,2018)State task of the V.L.Komarov Botanical Institute of the Russian Academy of Sciences(AAAA-A19-119080990059-1 and RFBR,project 19-04-00024)the National Natural Science Foundation of China(Nos.30770013,31500013)the National Project on Scientific Ground work for Basic Science of the Ministry of Science and Technology(Nos.2012FY1116002014FY210400)the Coordenacao de Aperfeic¸oamento de Pessoal de Nivel Superior(CAPES-Brazil)for the PhD scholarshipsCNPq for providing‘Produtividade em Pesquisa’(Proc.307922/2014-6 and Proc.307947/2017-3)grantCONACYT(Project 252934)COFAAIPN(Project SIP-20195222)the financial support provided for his researchesthe Coordenacao de Aperfeic¸oamento de Pessoal de Nivel Superior(CAPES-Brazil)for the PhD scholarshipsthe following sources of funding for his All-Taxa Biodiversity Inventory work at the Boston Harbor Islands National Recreation Area(Massachusetts,USA):National Park Service,Boston Harbor Now and New England Botanical Club(2017 Les Mehrhoff Botanical Research Award)the support from the Iranian Research Organization for Science and Technology Grant No.1012196004partly supported by the ELTE Institutional Excellence Program(1783-3/2018/FEKUTSRAT)of the Hungarian Ministry of Human Capacities.
文摘The Basidiomycota constitutes a major phylum of the kingdom Fungi and is second in species numbers to the Ascomycota.The present work provides an overview of all validly published,currently used basidiomycete genera to date in a single document.An outline of all genera of Basidiomycota is provided,which includes 1928 currently used genera names,with 1263 synonyms,which are distributed in 241 families,68 orders,18 classes and four subphyla.We provide brief notes for each accepted genus including information on classification,number of accepted species,type species,life mode,habitat,distribution,and sequence information.Furthermore,three phylogenetic analyses with combined LSU,SSU,5.8s,rpb1,rpb2,and ef1 datasets for the subphyla Agaricomycotina,Pucciniomycotina and Ustilaginomycotina are conducted,respectively.Divergence time estimates are provided to the family level with 632 species from 62 orders,168 families and 605 genera.Our study indicates that the divergence times of the subphyla in Basidiomycota are 406-430 Mya,classes are 211-383 Mya,and orders are 99-323 Mya,which are largely consistent with previous studies.In this study,all phylogenetically supported families were dated,with the families of Agaricomycotina diverging from 27-178 Mya,Pucciniomycotina from 85-222 Mya,and Ustilaginomycotina from 79-177 Mya.Divergence times as additional criterion in ranking provide additional evidence to resolve taxonomic problems in the Basidiomycota taxonomic system,and also provide a better understanding of their phylogeny and evolution.