Early-stage fire-warning systems(EFWSs)have attracted significant attention owing to their superiority in detecting fire situations occurring in the pre-combustion process.Substantial progress on EFWSs has been achiev...Early-stage fire-warning systems(EFWSs)have attracted significant attention owing to their superiority in detecting fire situations occurring in the pre-combustion process.Substantial progress on EFWSs has been achieved recently,and they have presented a considerable possibility for more evacuation time to control constant unintentional fire hazards in our daily life.This review mainly makes a comprehensive summary of the current EFWSs,including the working mechanisms and their performance.According to the different working mechanisms,fire alarms can be classified into graphene oxide-based fire alarms,semiconductor-based fire alarms,thermoelectric-based fire alarms,and fire alarms on other working mechanisms.Finally,the challenge and prospect for EFWSs are briefly provided by comparing the art of state of fire alarms.This work can propose a more comprehensive understanding of EFWSs and a guideline for the cutting-edge development direction of EFWSs for readers.展开更多
In this work, we modeled and simulated the electric potential generated by point charges in the region of grounded conductor planes for Yukawa potential (e−μ/r) and Coulomb potential (1/r). We show the symb...In this work, we modeled and simulated the electric potential generated by point charges in the region of grounded conductor planes for Yukawa potential (e−μ/r) and Coulomb potential (1/r). We show the symbolic expression for the electric potential and some graphs for it and for the electric field with different values of μ. We observe that the electric potential decreases as the value of μ increases and that does not allow all the charge to be distributed on the surface of the conductor.展开更多
Diverse models have been proposed for explaining the electrical performance of memristive devices. In principle, the behavior of internal variables associated to each one could be extracted from experimental results. ...Diverse models have been proposed for explaining the electrical performance of memristive devices. In principle, the behavior of internal variables associated to each one could be extracted from experimental results. In a former work, thermally grown TiOmemristive structures were built and characterized to obtain the constitutive relationship(magnetic flux versus charge). The aim of this work is to continue that analysis by determining the microscopic parameters within the frame of a simple model. We use the already obtained memristance dependence of time and the basic expressions from the non-linear model proposed by Strukov et al. to compute the state-variable,the mobility of the doping species, the speed of the boundary between the doped and the undoped regions, the voltages and the electric fields on the distinct regions. The power dissipation and its time evolution are also presented. Moreover, a quite different window function from those formerly proposed, which was estimated from experimental data, is also determined. This information provides a straightforward picture of the ionic transport during one cycle of a square voltage waveform within the framework of this simple model. Finally, a quality factor is proposed as the key parameter for actual memristors viewed under the same model.展开更多
From the symplectic representation of an autonomous nonlinear dynamical system with holonomic con- straints, i.e., those that can be represented through a symplectic form derived from a Hamiltonian, we present a new p...From the symplectic representation of an autonomous nonlinear dynamical system with holonomic con- straints, i.e., those that can be represented through a symplectic form derived from a Hamiltonian, we present a new proof on the realization of the symplectic feedback action, which has several theoretical advantages in demonstrating the uniqueness and existence of this type of solution. Also, we propose a technique based on the interpretation, construction and character- ization of the pull-back differential on the symplectic manifold as a member of a one-parameter Lie group. This allows one to synthesize the control law that governs a certain system to achieve a desired behavior; and the method developed from this is applied to a classical system such as the inverted pendulum.展开更多
基金This work was partially supported by the China Scholarship Council under the Grant CSC(201908110272)BIOFIRESAFE Project funded by Ministerio De Ciencia E Innovacion,Spain,with the project numbers:PID2020-117274RB-I00BIOFIRESAFE and PEJ-2018 MINECO.
文摘Early-stage fire-warning systems(EFWSs)have attracted significant attention owing to their superiority in detecting fire situations occurring in the pre-combustion process.Substantial progress on EFWSs has been achieved recently,and they have presented a considerable possibility for more evacuation time to control constant unintentional fire hazards in our daily life.This review mainly makes a comprehensive summary of the current EFWSs,including the working mechanisms and their performance.According to the different working mechanisms,fire alarms can be classified into graphene oxide-based fire alarms,semiconductor-based fire alarms,thermoelectric-based fire alarms,and fire alarms on other working mechanisms.Finally,the challenge and prospect for EFWSs are briefly provided by comparing the art of state of fire alarms.This work can propose a more comprehensive understanding of EFWSs and a guideline for the cutting-edge development direction of EFWSs for readers.
文摘In this work, we modeled and simulated the electric potential generated by point charges in the region of grounded conductor planes for Yukawa potential (e−μ/r) and Coulomb potential (1/r). We show the symbolic expression for the electric potential and some graphs for it and for the electric field with different values of μ. We observe that the electric potential decreases as the value of μ increases and that does not allow all the charge to be distributed on the surface of the conductor.
文摘Diverse models have been proposed for explaining the electrical performance of memristive devices. In principle, the behavior of internal variables associated to each one could be extracted from experimental results. In a former work, thermally grown TiOmemristive structures were built and characterized to obtain the constitutive relationship(magnetic flux versus charge). The aim of this work is to continue that analysis by determining the microscopic parameters within the frame of a simple model. We use the already obtained memristance dependence of time and the basic expressions from the non-linear model proposed by Strukov et al. to compute the state-variable,the mobility of the doping species, the speed of the boundary between the doped and the undoped regions, the voltages and the electric fields on the distinct regions. The power dissipation and its time evolution are also presented. Moreover, a quite different window function from those formerly proposed, which was estimated from experimental data, is also determined. This information provides a straightforward picture of the ionic transport during one cycle of a square voltage waveform within the framework of this simple model. Finally, a quality factor is proposed as the key parameter for actual memristors viewed under the same model.
文摘From the symplectic representation of an autonomous nonlinear dynamical system with holonomic con- straints, i.e., those that can be represented through a symplectic form derived from a Hamiltonian, we present a new proof on the realization of the symplectic feedback action, which has several theoretical advantages in demonstrating the uniqueness and existence of this type of solution. Also, we propose a technique based on the interpretation, construction and character- ization of the pull-back differential on the symplectic manifold as a member of a one-parameter Lie group. This allows one to synthesize the control law that governs a certain system to achieve a desired behavior; and the method developed from this is applied to a classical system such as the inverted pendulum.