期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Parametrization of the Teichmüller Space of Bordered Surface NEC Groups
1
作者 B.ESTRADA E.MARTíNEZ 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2008年第6期1039-1056,共18页
A non-Euclidean crystallographic group F (NEC group, for short) is a discrete subgroup of isometries of the hyperbolic plane H, with compact quotient space H/Г. These groups uniformize Klein surfaces, surfaces endo... A non-Euclidean crystallographic group F (NEC group, for short) is a discrete subgroup of isometries of the hyperbolic plane H, with compact quotient space H/Г. These groups uniformize Klein surfaces, surfaces endowed with dianalytic structure. These surfaces can be seen as a generalization of Riemann surfaces. Fundamental polygons play an important role in the study of parametrizations of the Teichmuller space of NEC groups. In this work we construct a class of right-angled polygons which are fundamental regions of bordered surface NEC groups. The free parameters used in the construction of the polygons give a parametrization of the Teichmuller space. From the parameters we obtain explicit matrices of the generators of the groups. Finally, we give examples to exhibit how different relations between the parameters reflect the existence of automorphisms on the quotient surfaces. 展开更多
关键词 non-Euclidean crystallographic groups hyperbolic polygons Klein surfaces automorphisms of surfaces Teichmfiller space
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部