Background: Dengue is a Neglected tropical disease (NTDs) with high incidence in Brazil. This disease is caused by Dengue virus and is transmitted by Aedes aegypti mosquito. The search for new approaches for controlli...Background: Dengue is a Neglected tropical disease (NTDs) with high incidence in Brazil. This disease is caused by Dengue virus and is transmitted by Aedes aegypti mosquito. The search for new approaches for controlling of this disease is the subject of numerous studies. The aaNAT is a key enzyme in the metabolism of A. aegypti and is crucial in the sclerotization process, as well as regulation of circadian rhythm and inactivation of neurotransmitters. Computational techniques applied to studies of biological systems become an effective weapon in the mapping and management of 3D data structures, giving direction and guidance of potential ligands that can form stable complexes with targets of interest, using a Molecular Docking approach. The present study was conducted by a virtual screening, followed by docking calculations, in order to find molecules that could inhibit aaNAT. In this study, we used available compounds in SAM database (Bioinformatics and Medicinal Chemistry Laboratory—Southwest Bahia State University, Jequié-Bahia, Brazil), PubChem and ZINC. Results: The result of dockings with selected ligands showed good energy affinities, presenting potential inhibitory interactions with the enzyme active site. Conclusions: The Coa-S-acetyl-tryptamine and 3-indoleacriloil-coenzyme-A showed the same binding energies -8.9 Kcal/Mol and were described as possible inhibitors of aaNAT.展开更多
文摘Background: Dengue is a Neglected tropical disease (NTDs) with high incidence in Brazil. This disease is caused by Dengue virus and is transmitted by Aedes aegypti mosquito. The search for new approaches for controlling of this disease is the subject of numerous studies. The aaNAT is a key enzyme in the metabolism of A. aegypti and is crucial in the sclerotization process, as well as regulation of circadian rhythm and inactivation of neurotransmitters. Computational techniques applied to studies of biological systems become an effective weapon in the mapping and management of 3D data structures, giving direction and guidance of potential ligands that can form stable complexes with targets of interest, using a Molecular Docking approach. The present study was conducted by a virtual screening, followed by docking calculations, in order to find molecules that could inhibit aaNAT. In this study, we used available compounds in SAM database (Bioinformatics and Medicinal Chemistry Laboratory—Southwest Bahia State University, Jequié-Bahia, Brazil), PubChem and ZINC. Results: The result of dockings with selected ligands showed good energy affinities, presenting potential inhibitory interactions with the enzyme active site. Conclusions: The Coa-S-acetyl-tryptamine and 3-indoleacriloil-coenzyme-A showed the same binding energies -8.9 Kcal/Mol and were described as possible inhibitors of aaNAT.