We present a method to fabricate handcrafted thermoelectric devices on standard office paper substrates.The devices are based on thin films of WS_(2),Te,and BP(P-type semiconductors)and TiS_(3)and TiS_(2)(N-type semic...We present a method to fabricate handcrafted thermoelectric devices on standard office paper substrates.The devices are based on thin films of WS_(2),Te,and BP(P-type semiconductors)and TiS_(3)and TiS_(2)(N-type semiconductors),deposited by simply rubbing powder of these materials against paper.The thermoelectric properties of these semiconducting films revealed maximum Seebeck coefficients of(+1.32±0.27)mV K^(-1)and(-0.82±0.15)mV K^(-1)for WS_(2)and TiS_(3),respectively.Additionally,Peltier elements were fabricated by interconnecting the P-and N-type films with graphite electrodes.A thermopower value up to 6.11 mV K^(-1)was obtained when the Peltier element were constructed with three junctions.The findings of this work show proof-of-concept devices to illustrate the potential application of semiconducting van der Waals materials in future thermoelectric power generation as well as temperature sensing for low-cost disposable electronic devices.展开更多
A novel gas-phase electrocatalytic cell containing a low-temperature proton exchange membrane(PEM)was developed to electrochemically convert CO_2into organic compounds.Two different Cu-based cathode catalysts(Cu and C...A novel gas-phase electrocatalytic cell containing a low-temperature proton exchange membrane(PEM)was developed to electrochemically convert CO_2into organic compounds.Two different Cu-based cathode catalysts(Cu and Cu–C)were prepared by physical vapor deposition method(sputtering)and subsequently employed for the gas-phase electroreduction of CO_2at different temperatures(70–90°C).The prepared electrodes Cu and Cu–C were characterized by X-ray diffraction(XRD),X-ray photoemission spectroscopy(XPS)and scanning electron microscopy(SEM).As revealed,Cu is partially oxidized on the surface of the samples and the Cu and Cu–C cathodic catalysts were comprised of a porous,continuous,and homogeneous film with nanocrystalline Cu with a grain size of 16 and 8 nm,respectively.The influence of the applied current and temperature on the electro-catalytic activity and selectivity of these materials was investigated.Among the two investigated electrodes,the pure Cu catalyst film showed the highest CO_2specific electrocatalytic reduction rates and higher selectivity to methanol formation compared to the Cu–C electrode,which was attributed to the higher particle size of the former and lower Cu O/Cu ratio.The obtained results show potential interest for the possible use of electrical renewable energy for the transformation of CO_2into valuable products using low metal loading Cu based electrodes(0.5 mg Cu cm^(-2))prepared by sputtering.展开更多
Titanium is a very important element for several industrial applications, being one of the ninth most abundant elements in the Earth’s crust (0.63% wt). In this work it will discuss the different mining and industria...Titanium is a very important element for several industrial applications, being one of the ninth most abundant elements in the Earth’s crust (0.63% wt). In this work it will discuss the different mining and industrial activities involved in the production of titanium dioxide. The first step analyzed will treat about the beneficiation mining process of titanium mineral, and secondly, it will discuss the two main processes of the TiO2 manufacturing (sulphate and chloride routes). In addition, we will show different uses of the titanium dioxide pigment as filler in paper, plastics and rubber industries and as flux in glass manufacture, etc. Finally, we will show that the old wastes are currently called co-products since they were valorized, being commercialized by the Spanish industry of TiO2 production in different fields such as agriculture, civil engineering, or cement manufacturing.展开更多
Al-doped ZnO(AZO)thin films were deposited on glass substrates by rf-sputtering at room temperature.The effects of substrate rotation speed(ωS)on the morphological,structural,optical and electrical properties were in...Al-doped ZnO(AZO)thin films were deposited on glass substrates by rf-sputtering at room temperature.The effects of substrate rotation speed(ωS)on the morphological,structural,optical and electrical properties were investigated.SEM transversal images show that the substrate rotation produces dense columnar structures which were found to be better defined under substrate rotation.AFM images show that the surface particles of the samples formed under substrate rotation are smaller and denser than those of a stationary one,leading to smaller grain sizes.XRD results show that all films have hexagonal wurtzite structure and preferred c-axis orientation with a tensile stress along the c-axis.The average optical transmittance was above90%in UV-Vis region.The lowest resistivity value(8.5×10?3Ω·cm)was achieved atωS=0r/min,with a carrier concentration of1.8×1020cm?3,and a Hall mobility of4.19cm2/(V·s).For all other samples,the substrate rotation induced changes in the carrier concentration and Hall mobility which resulted in the increasing of electrical resistivity.These results indicate that the morphology,structure,optical and electrical properties of the AZO thin films are strongly affected by the substrate rotation speed.展开更多
In this contribution, a comparative study of metallic cobalt micro and nanoparticles obtained in solution by four different chemical routes is reported. Classic routes such as borohydride reduction in aqueous media an...In this contribution, a comparative study of metallic cobalt micro and nanoparticles obtained in solution by four different chemical routes is reported. Classic routes such as borohydride reduction in aqueous media and the so-called polyol methodology were used to obtain the cobalt nanostructures to be studied. Using CTAB as surfactant, cobalt hollow nanostructures were obtained. The use of strong reducing agents, like sodium borohydride, favors the formation of quasi-monodispersed nanoparticles of about 2 nm size but accompanied with impurities; for hydrazine(a mild reducer), nanoparticles of larger size are obtained which organize in spherical microagglomerates. Valuable information on the particles thermal stability and on nature of the species anchored at their surface was obtained from thermogravimetric curves. The samples to be studied were characterized from UV-vis, IR, X-ray diffraction, and electron microscopy images(scanning and transmission).展开更多
The transient response of a system of independent electrodes buried in a semi-infinite conducting medium is studied. Using a simple and versatile numerical scheme written by the authors and based on the Electric Field...The transient response of a system of independent electrodes buried in a semi-infinite conducting medium is studied. Using a simple and versatile numerical scheme written by the authors and based on the Electric Field Integral Equation (EFIE), the effect caused by harmonic signals ranging on frequency from Hz to hundred of MHz, and also by lightning type driving signal striking at a remote point far from the conductors, is extensively studied. The value of the scalar potential appearing on the electrodes as a function of the frequency of the applied signal is one of the variables investigated. Other features such as the input impedance at the injection point of the signal and the Ground Potential Rise (GPR) over the electrode system are also discussed.展开更多
Phosphogypsum (PG), primary by-product from phosphoric acid production, is accumulated in large stock-piles which were active until 2010, when spills were banned. It is considered as NORM material that contains radion...Phosphogypsum (PG), primary by-product from phosphoric acid production, is accumulated in large stock-piles which were active until 2010, when spills were banned. It is considered as NORM material that contains radionuclides from 238U and decay series which are of most radiotoxicity. PG was valorized and/or recycled in a building material, sulfur polymer cement (SPC). The SPC-PG samples reach the international regulation to use in the manufacture of building materials without radiological restrictions, except the sample with the 50% of PG. Under normal conditions of ventilation the contribution to the expected radon indoor concentration is also below the international recommendation.展开更多
In this work, the synthesis and photoluminescence response of HfO2 doped with Eu3+ (HfO2:Eu3+) are reported. The synthesis was carried out by the hydrothermal route of HfCl4 and EuCl3?.6H2O with NH4OH dissolved in dei...In this work, the synthesis and photoluminescence response of HfO2 doped with Eu3+ (HfO2:Eu3+) are reported. The synthesis was carried out by the hydrothermal route of HfCl4 and EuCl3?.6H2O with NH4OH dissolved in deionized water. To perform the hydrolysis, the precursors were subjected to hydrothermal treatment at 120°C, under autogenously pressure at reaction times of 24, 40, 52 and 72 hours. The synthesized nanoparticles were characterized by mean of X- ray diffraction (XRD), high resolution transmission electron microscope (HRTEM), and energy dispersive spectroscopy (EDS). Samples excited with 395 nm radiation show photoluminescence emission lines corresponding to the electronic transitions 5D0 → 7FJ (J = 0 → 4), characteristics of the Eu3+ ion. The photoluminescence emission intensity increases with the increasing of the reaction time, reaching a maximum at 72 hours. The excitation band peaked at 395 nm, makes this material an excellent candidate for applications in solid state white lamps.展开更多
Recently, a large part of the advances in nanotechnology have been directed towards the development of high-speed electronics, more efficient catalysts, and sensors. This latter group of applications has great relevan...Recently, a large part of the advances in nanotechnology have been directed towards the development of high-speed electronics, more efficient catalysts, and sensors. This latter group of applications has great relevance and unprecedented development potential for the coming years.So far, some of the main objectives for the development of sensors have focused on making more sensitive, effective and specific sensing devices.The improvement of these systems and the increase of specificity are clearly associated with a decrease in size of the components, which can lead to obtaining more rapid action, almost in real time. Nanomaterials currently used in sensor development include a long list of nanostructured systems, as for example: metal nanotubes, nanowires, nanofibers, nanocomposites, nanorods, nanoparticles, nanostructured polymers, and different allotropes of carbon as carbon nanotubes, graphene or fullerenes, among others.展开更多
Hydrogels are highly water-absorbent hydrophilic polymer networks, which show potential in many biocompatible applications. In previous work, we demonstrated the feasibility of using poly(ethylene glycol) dimethacryla...Hydrogels are highly water-absorbent hydrophilic polymer networks, which show potential in many biocompatible applications. In previous work, we demonstrated the feasibility of using poly(ethylene glycol) dimethacrylate (PEG-DMA) gels polymerized with a photoinitiator for encapsulation and stabilization of painted biomimetic membrane arrays for novel separation technologies or biosensor applications. These gels were formed from PEG-DMA monomers suspended in phosphate buffered saline (PBS) solution and gelated by radical polymerization in the presence of the photoinitiator Darocur 1173. In this work, we show that the properties of a PEG-DMA hydrogel formed by photoinitiated polymerizetion can be tailored by varying the photocrosslinking time. Fourier Transform Infrared Spectroscopy (FTIR) and Raman Spectroscopy (RS) showed that the optimal crosslinking time for the gel was 6 - 10 minutes and that the water content of the gels could be tuned in the range of 50 - 90 wt%. The resistivity was between 0.8 - 3.5 Ωm, which is comparable to that of PBS. The low resistivity of the gel makes it compatible for encapsulating membranes for (ion channel based) biosensor applications. With FTIR and RS we identified spectral features of the hydrogel, which may serve as a diagnostic tool to monitor changes in the gels due to variation in parameters such as time, pH, temperature, aging or exposure to chemicals or biological material.展开更多
In this work,we compare different methods for implementing a triplicator,a phase grating that generates three equiintense diffraction orders.The design with optimal efficiency features a continuous phase profile,which...In this work,we compare different methods for implementing a triplicator,a phase grating that generates three equiintense diffraction orders.The design with optimal efficiency features a continuous phase profile,which cannot be easily reproduced,and is typically affected by quantization.We compare its performance with binary and sinusoidal phase profiles.We also analyze the effect of quantizing the phase levels.Finally,a random approach is adopted to eliminate the additional harmonic orders.In all cases,a liquid-crystal-on-silicon spatial light modulator is employed to experimentally verify and compare the different approaches.展开更多
In this paper,the effect of Coulomb and dielectric forces on the onset of Rayleigh-Bénard convection(RBC)in a dielectric liquid layer contained between two parallel electrode plates has been numerically investiga...In this paper,the effect of Coulomb and dielectric forces on the onset of Rayleigh-Bénard convection(RBC)in a dielectric liquid layer contained between two parallel electrode plates has been numerically investigated.Two different operating conditions have been considered in electrohydrodynamic(EHD)conduction:ohmic and saturation,and variations in the physical properties of the dielectric fluid with temperature.The electric equations and the state equations based on the Boussinesq approximation are integrated in the framework of OpenFOAM buoyantBoussinesqPimpleFoam program.The results show that in the ohmic regime,the combined effect of Coulomb and dielectric forces promotes the onset of RBC flow,while in the saturation state,the inhibition of RBC flow by Coulomb force is more significant.The value of the critical Rayleigh number Ra decreases with increasing electric Reynolds number ReE in the ohmic regime,whereas in the saturation state,the critical Ra increases with increasing ReE.In the saturation regime,the flow field always has a steady flow in the range of parameters considered.However,the onset of the RBC flow promoted by the dielectric force is more pronounced in the ohmic state.Due to the presence of the dielectric force,the flow field exhibits periodic oscillatory flow at low electric Reynolds numbers for the range of parameters considered.展开更多
Strain engineering,as a powerful strategy to tune the optical and electrical properties of two-dimensional(2D)materials by deforming their crystal lattice,has attracted significant interest in recent years.2D material...Strain engineering,as a powerful strategy to tune the optical and electrical properties of two-dimensional(2D)materials by deforming their crystal lattice,has attracted significant interest in recent years.2D materials can sustain ultra-high strains,even up to 10%,due to the lack of dangling bonds on their surface,making them ideal brittle solids.This remarkable mechanical resilience,together with a strong strain-tunable band structure,endows 2D materials with a broad optical and electrical response upon strain.However,strain engineering based on 2D materials is restricted by their nanoscale and strain quantification troubles.In this study,we have modified a homebuilt three-points bending apparatus to transform it into a four-points bending apparatus that allows for the application of both compressive and tensile strains on 2D materials.This approach allows for the efficient and reproducible construction of a strain system and minimizes the buckling effect caused by the van der Waals interaction by adamantane encapsulation strategy.Our results demonstrate the feasibility of introducing compressive strain on 2D materials and the potential for tuning their optical and physical properties through this approach.展开更多
Actually is recognized the importance of indoor air environment and associated health risks. In order to evaluate indoor air quality and to characterize the particles in terms of size, composition and shape were done ...Actually is recognized the importance of indoor air environment and associated health risks. In order to evaluate indoor air quality and to characterize the particles in terms of size, composition and shape were done measurements of the suspended particulate matter in a mechanical workshop of the Polytechnic University of Valencia (Spain). These measurements were performed using scanning electron microscope (SEM) with energy dispersive X-ray microanalysis (EDX) and image digital analysis. To differentiation of individual particles in the fine- ultrafine fraction, in some case, was used the atomic force microscopy (AFM). Multivariate statistics, such as hierarchical cluster analysis and factor analysis were appliqued and allowed to establish groups of elements and in this way to facilitate the identification of the natural and anthropogenic sources. It is confirmed that indoor air is influenced by outdoor surroundings and the anthropogenic sources due to the daily activity.展开更多
Ultrafast laser pulses provide unique tools to manipulate magnetization dynamics at femtosecond timescales,where the interaction of the electric field usually dominates over the magnetic field.Recent proposals using s...Ultrafast laser pulses provide unique tools to manipulate magnetization dynamics at femtosecond timescales,where the interaction of the electric field usually dominates over the magnetic field.Recent proposals using structured laser beams have demonstrated the possibility to produce regions where intense oscillating magnetic fields are isolated from the electric field.In these conditions,we show that technologically feasible tesla-scale circularly polarized high-frequency magnetic fields induce purely precessional nonlinear magnetization dynamics.This fundamental result not only opens an avenue in the study of laser-induced ultrafast magnetization dynamics,but also sustains technological implications as a route to promote all-optical non-thermal magnetization dynamics both at shorter timescales-towards the subfemtosecond regime-and at THz frequencies.展开更多
Nowadays seakeeping is mostly analyzed by means of model testing or numerical models.Both require a significant amount of time and the exact hull geometry,and therefore seakeeping is not taken into account at the earl...Nowadays seakeeping is mostly analyzed by means of model testing or numerical models.Both require a significant amount of time and the exact hull geometry,and therefore seakeeping is not taken into account at the early stages of ship design.Hence the main objective of this work is the development of a seakeeping prediction tool to be used in the early stages of ship design.This tool must be fast,accurate,and not require the exact hull shape.To this end,an artificial intel-ligence(AI)algorithm has been developed.This algorithm is based on Artificial Neural Networks(ANNs)and only requires a number of ship coefficients of form.The methodology developed to obtain the predictive algorithm is presented as well as the database of ships used for training the ANN.The data were generated using a frequency domain seakeeping code based on the boundary element method(BEM).Also,the AI predictions are compared to the BEM results using both,ship hulls included and not included in the database.As a result of this work it has been obtained an AI tool for seakeeping prediction of conventional monohull vessels.展开更多
Two aromatic co-polyamides were synthesized combining two diacid monomers containing bulky pendant groups, 5-(9,10-dihydro-9,10-ethanoanthracene-11,12-dicarboximido)isophthalic acid(DEAIA) and 5-tert-butylisophthalic ...Two aromatic co-polyamides were synthesized combining two diacid monomers containing bulky pendant groups, 5-(9,10-dihydro-9,10-ethanoanthracene-11,12-dicarboximido)isophthalic acid(DEAIA) and 5-tert-butylisophthalic acid(TERT), with 4,4′-(hexafluoroisopropylidene)dianiline(HFA) or 2,3,5,6-tetramethyl-1,4-phenylenediamine(Durene) by direct polycondensation. The structures of the obtained aromatic co-polyamides were confirmed by FTIR, Raman and 1 H-NMR. The co-copolyamide films, DHTH and DDTD, exhibited rms-roughness values between 0.94 and 1.60 nm, respectively. Moreover, they presented good thermal stability up to300 °C. Young's moduli of the co-polyamide films were between 4.1 and 4.3 GPa. X-ray diffraction results showed that the co-polyamide films were amorphous due to the incorporation of both bulky pendant groups, tert-butyl and dibenzobarrelene. The combination of bulky pendant groups provided intrinsically transparent co-polyamide films with a transmittance higher than 88% in the range of 400-780 nm.Due to these outstanding film and optical properties, they are suggested to be flexible substrates in applications for solar cell and other portable electronic devices.展开更多
Rare-earth(RE)rich intermetallics crystallizing in orthorhombic Ho_(6)Co_(2)Ga-type crystal structure exhibit peculiar magnetic properties that are not widely reported for their magnetic ordering,order of magnetic pha...Rare-earth(RE)rich intermetallics crystallizing in orthorhombic Ho_(6)Co_(2)Ga-type crystal structure exhibit peculiar magnetic properties that are not widely reported for their magnetic ordering,order of magnetic phase transition,and related magnetocaloric behavior.By tuning the type of RE element in RE_(6)Co_(2)Ga(RE=Ho,Dy or Gd)compounds,metamagnetic anti-to-paramagnetic(AF to PM)phase transitions could be tuned to ferro-to-paramagnetic(FM to PM)phase transitions.Furthermore,the FM ground state for Gd_(6)Co_(2)Ga is confirmed by density functional theory calculations in addition to experimental observations.The field dependence magnetocaloric and Banerjee’s criteria demonstrate that Ho_(6)Co_(2)Ga and Dy_(6)Co_(2)Ga undergo a first-order phase transition in addition to a second-order phase transition,whereas only the latter is observed for Gd_(6)Co_(2)Ga.The two extreme alloys of the series,Ho_(6)Co_(2)Ga and Gd_(6)Co_(2)Ga,show maximum isothermal entropy change(|ΔS_(iso)^(max)(5T)|)of 10.1 and 9.1 J kg^(-1)K^(-1)at 26 and 75 K,close to H_(2)and N_(2)liquefaction,respectively.This outstanding magnetocaloric effect performance makes the RE6 Co_(2)Ga series of potential for cryogenic magnetic refrigeration applications.展开更多
This study presents the photoluminescence characteristics of the PZT 53/47 system doped at A and/or B sites, with Nb(PZTN), La(PLZT), and Nb–La(PLZTN) in the concentration range from 0.2 to 1.0 molar fraction. The in...This study presents the photoluminescence characteristics of the PZT 53/47 system doped at A and/or B sites, with Nb(PZTN), La(PLZT), and Nb–La(PLZTN) in the concentration range from 0.2 to 1.0 molar fraction. The intensity of the emission bands of the system PZTN is two orders higher than the intensity of the emission bands of the systems PLZT and PLZTN, and these emission bands are located at 1.73 eV(718 nm), 2.56 eV(485 nm), and 2.93 eV(424 nm). The origin of the luminescence in these systems is associated with lead and oxygen vacancies produced during the sintering process. The results from X-ray diffraction(XRD) show a mixture of rhombohedral and tetragonal phases. The system PZTN shows a higher tetragonal phase concentration, while PLZT and PLZTN systems show a higher rhombohedral phase concentration. The cell volume shows an increase with dopant concentration only in the case of the PLZTN system. The band gap energy shows a small variation in the PZTN and PLZTN cases around 3.0 eV, a close value to the band gap energy of the pure PZT 53/47 sample. The system PLZT shows an increasing behavior until 4.41 eV for the higher dopant concentration.展开更多
Several pupil filtering techniques have been developed in the last few years to obtain transverse superresolution (a narrower point spread function core). Such a core decrease entails two relevant limitations: a de...Several pupil filtering techniques have been developed in the last few years to obtain transverse superresolution (a narrower point spread function core). Such a core decrease entails two relevant limitations: a decrease of the peak intensity and an increase of the sidelobe intensity. Here, we calculate the Strehl ratio as a function of the core size for the most used binary phase filters. Furthermore, we show that this relation approaches the fundamental limit of the attainable Strehl ratio at the focal plane for any filter. Finally, we show the calculation of the peak-to-sidelobe ratio in order to check the system viability in every application.展开更多
基金funded by the European Research Council(ERC)under the European Union's Horizon 2020 research and innovation program(grant agreement no.755655,ERC-StG 2017 project 2D-TOPSENSE)the Ministry of Science and Innovation(Spain)through the project PID2020-115566RB-I00+7 种基金the Distinguished Scientist Fellowship Program(DSFP)at King Saud University for partial funding of this workfinancial support from the Agencia Estatal de Investigación of Spain(Grants PID2019-106820RB,RTI2018-097180-B-100,and PGC2018-097018-B-I00)the Junta de Castilla y León(Grants SA256P18 and SA121P20),including funding by ERDF/FEDERfinancial support from Universidad Complutense de Madrid and European Commission(MSCA COFUND UNA4CAREER grant.Project number 4129252)financial support from MICINN(Spain)through the program Juan de la Cierva-Incorporaciónthe financial support of the Spanish Ministry of Industry and Competitiveness to the project MAT2017-84496-Rfinancial support from the Ministry of Science and Innovation(Spain)through the project RT2018-099794-B-100financial support from the Ministry de Universities(Spain)(Ph.D.contract FPU19/04224)
文摘We present a method to fabricate handcrafted thermoelectric devices on standard office paper substrates.The devices are based on thin films of WS_(2),Te,and BP(P-type semiconductors)and TiS_(3)and TiS_(2)(N-type semiconductors),deposited by simply rubbing powder of these materials against paper.The thermoelectric properties of these semiconducting films revealed maximum Seebeck coefficients of(+1.32±0.27)mV K^(-1)and(-0.82±0.15)mV K^(-1)for WS_(2)and TiS_(3),respectively.Additionally,Peltier elements were fabricated by interconnecting the P-and N-type films with graphite electrodes.A thermopower value up to 6.11 mV K^(-1)was obtained when the Peltier element were constructed with three junctions.The findings of this work show proof-of-concept devices to illustrate the potential application of semiconducting van der Waals materials in future thermoelectric power generation as well as temperature sensing for low-cost disposable electronic devices.
基金Financial support from the "Spanish Ministry of Economy, Industry, and Competitiveness" (Project CTQ2016-75491-R)from Abengoa Researchthe Spanish Ministry of Economy, Industry, and Competitiveness for financial support through the Ramón y Cajal Program, Grant: RYC-2015-19230
文摘A novel gas-phase electrocatalytic cell containing a low-temperature proton exchange membrane(PEM)was developed to electrochemically convert CO_2into organic compounds.Two different Cu-based cathode catalysts(Cu and Cu–C)were prepared by physical vapor deposition method(sputtering)and subsequently employed for the gas-phase electroreduction of CO_2at different temperatures(70–90°C).The prepared electrodes Cu and Cu–C were characterized by X-ray diffraction(XRD),X-ray photoemission spectroscopy(XPS)and scanning electron microscopy(SEM).As revealed,Cu is partially oxidized on the surface of the samples and the Cu and Cu–C cathodic catalysts were comprised of a porous,continuous,and homogeneous film with nanocrystalline Cu with a grain size of 16 and 8 nm,respectively.The influence of the applied current and temperature on the electro-catalytic activity and selectivity of these materials was investigated.Among the two investigated electrodes,the pure Cu catalyst film showed the highest CO_2specific electrocatalytic reduction rates and higher selectivity to methanol formation compared to the Cu–C electrode,which was attributed to the higher particle size of the former and lower Cu O/Cu ratio.The obtained results show potential interest for the possible use of electrical renewable energy for the transformation of CO_2into valuable products using low metal loading Cu based electrodes(0.5 mg Cu cm^(-2))prepared by sputtering.
基金This research has been partially supported by the Government of Andalusia’s project“Characterization and modelling of the phosphogypsum stacks from Huelva for their environmental management and control”(Ref.:RNM-6300) by National Institution of Higher Education,Science,Technology and Innovation of the Republic of Ecuador-(SENESCYT for its acronym in Spanish)+2 种基金The authors would like to acknowledge the financial support received from the company Tioxide-Huelva by the research projects“Valorization of red gypsum from the industrial production of titanium dioxide”(PROFIT,CIT-310200-2007-47)“Applications of red gypsum and Tionite waste in commercial applications”The authors also thank to the technical staff for the advisory provided in the explanation of the results.
文摘Titanium is a very important element for several industrial applications, being one of the ninth most abundant elements in the Earth’s crust (0.63% wt). In this work it will discuss the different mining and industrial activities involved in the production of titanium dioxide. The first step analyzed will treat about the beneficiation mining process of titanium mineral, and secondly, it will discuss the two main processes of the TiO2 manufacturing (sulphate and chloride routes). In addition, we will show different uses of the titanium dioxide pigment as filler in paper, plastics and rubber industries and as flux in glass manufacture, etc. Finally, we will show that the old wastes are currently called co-products since they were valorized, being commercialized by the Spanish industry of TiO2 production in different fields such as agriculture, civil engineering, or cement manufacturing.
文摘Al-doped ZnO(AZO)thin films were deposited on glass substrates by rf-sputtering at room temperature.The effects of substrate rotation speed(ωS)on the morphological,structural,optical and electrical properties were investigated.SEM transversal images show that the substrate rotation produces dense columnar structures which were found to be better defined under substrate rotation.AFM images show that the surface particles of the samples formed under substrate rotation are smaller and denser than those of a stationary one,leading to smaller grain sizes.XRD results show that all films have hexagonal wurtzite structure and preferred c-axis orientation with a tensile stress along the c-axis.The average optical transmittance was above90%in UV-Vis region.The lowest resistivity value(8.5×10?3Ω·cm)was achieved atωS=0r/min,with a carrier concentration of1.8×1020cm?3,and a Hall mobility of4.19cm2/(V·s).For all other samples,the substrate rotation induced changes in the carrier concentration and Hall mobility which resulted in the increasing of electrical resistivity.These results indicate that the morphology,structure,optical and electrical properties of the AZO thin films are strongly affected by the substrate rotation speed.
基金partially supported by the Consejo Nacional de Ciencia y Tecnología(CONACYTMéxico)under Grant SEP-CONACyT 2009No.129048
文摘In this contribution, a comparative study of metallic cobalt micro and nanoparticles obtained in solution by four different chemical routes is reported. Classic routes such as borohydride reduction in aqueous media and the so-called polyol methodology were used to obtain the cobalt nanostructures to be studied. Using CTAB as surfactant, cobalt hollow nanostructures were obtained. The use of strong reducing agents, like sodium borohydride, favors the formation of quasi-monodispersed nanoparticles of about 2 nm size but accompanied with impurities; for hydrazine(a mild reducer), nanoparticles of larger size are obtained which organize in spherical microagglomerates. Valuable information on the particles thermal stability and on nature of the species anchored at their surface was obtained from thermogravimetric curves. The samples to be studied were characterized from UV-vis, IR, X-ray diffraction, and electron microscopy images(scanning and transmission).
文摘The transient response of a system of independent electrodes buried in a semi-infinite conducting medium is studied. Using a simple and versatile numerical scheme written by the authors and based on the Electric Field Integral Equation (EFIE), the effect caused by harmonic signals ranging on frequency from Hz to hundred of MHz, and also by lightning type driving signal striking at a remote point far from the conductors, is extensively studied. The value of the scalar potential appearing on the electrodes as a function of the frequency of the applied signal is one of the variables investigated. Other features such as the input impedance at the injection point of the signal and the Ground Potential Rise (GPR) over the electrode system are also discussed.
文摘Phosphogypsum (PG), primary by-product from phosphoric acid production, is accumulated in large stock-piles which were active until 2010, when spills were banned. It is considered as NORM material that contains radionuclides from 238U and decay series which are of most radiotoxicity. PG was valorized and/or recycled in a building material, sulfur polymer cement (SPC). The SPC-PG samples reach the international regulation to use in the manufacture of building materials without radiological restrictions, except the sample with the 50% of PG. Under normal conditions of ventilation the contribution to the expected radon indoor concentration is also below the international recommendation.
文摘In this work, the synthesis and photoluminescence response of HfO2 doped with Eu3+ (HfO2:Eu3+) are reported. The synthesis was carried out by the hydrothermal route of HfCl4 and EuCl3?.6H2O with NH4OH dissolved in deionized water. To perform the hydrolysis, the precursors were subjected to hydrothermal treatment at 120°C, under autogenously pressure at reaction times of 24, 40, 52 and 72 hours. The synthesized nanoparticles were characterized by mean of X- ray diffraction (XRD), high resolution transmission electron microscope (HRTEM), and energy dispersive spectroscopy (EDS). Samples excited with 395 nm radiation show photoluminescence emission lines corresponding to the electronic transitions 5D0 → 7FJ (J = 0 → 4), characteristics of the Eu3+ ion. The photoluminescence emission intensity increases with the increasing of the reaction time, reaching a maximum at 72 hours. The excitation band peaked at 395 nm, makes this material an excellent candidate for applications in solid state white lamps.
文摘Recently, a large part of the advances in nanotechnology have been directed towards the development of high-speed electronics, more efficient catalysts, and sensors. This latter group of applications has great relevance and unprecedented development potential for the coming years.So far, some of the main objectives for the development of sensors have focused on making more sensitive, effective and specific sensing devices.The improvement of these systems and the increase of specificity are clearly associated with a decrease in size of the components, which can lead to obtaining more rapid action, almost in real time. Nanomaterials currently used in sensor development include a long list of nanostructured systems, as for example: metal nanotubes, nanowires, nanofibers, nanocomposites, nanorods, nanoparticles, nanostructured polymers, and different allotropes of carbon as carbon nanotubes, graphene or fullerenes, among others.
基金This work was supported through MEMBAQ,a Specific Targeted Research Project(STREP)by the European Commission under the Sixth Framework Programme(NMP4-CT-2006-033234)+1 种基金by the Danish National Ad-vanced Technology Foundation(023-2007-1)by a grant to DTU Physics from the Danish National Research Foundation
文摘Hydrogels are highly water-absorbent hydrophilic polymer networks, which show potential in many biocompatible applications. In previous work, we demonstrated the feasibility of using poly(ethylene glycol) dimethacrylate (PEG-DMA) gels polymerized with a photoinitiator for encapsulation and stabilization of painted biomimetic membrane arrays for novel separation technologies or biosensor applications. These gels were formed from PEG-DMA monomers suspended in phosphate buffered saline (PBS) solution and gelated by radical polymerization in the presence of the photoinitiator Darocur 1173. In this work, we show that the properties of a PEG-DMA hydrogel formed by photoinitiated polymerizetion can be tailored by varying the photocrosslinking time. Fourier Transform Infrared Spectroscopy (FTIR) and Raman Spectroscopy (RS) showed that the optimal crosslinking time for the gel was 6 - 10 minutes and that the water content of the gels could be tuned in the range of 50 - 90 wt%. The resistivity was between 0.8 - 3.5 Ωm, which is comparable to that of PBS. The low resistivity of the gel makes it compatible for encapsulating membranes for (ion channel based) biosensor applications. With FTIR and RS we identified spectral features of the hydrogel, which may serve as a diagnostic tool to monitor changes in the gels due to variation in parameters such as time, pH, temperature, aging or exposure to chemicals or biological material.
基金supported by the Ministerio de Ciencia e Innovación,Spain(PID2021-126509OB-C22)Generalitat Valenciana(CIAICO/2021/276)。
文摘In this work,we compare different methods for implementing a triplicator,a phase grating that generates three equiintense diffraction orders.The design with optimal efficiency features a continuous phase profile,which cannot be easily reproduced,and is typically affected by quantization.We compare its performance with binary and sinusoidal phase profiles.We also analyze the effect of quantizing the phase levels.Finally,a random approach is adopted to eliminate the additional harmonic orders.In all cases,a liquid-crystal-on-silicon spatial light modulator is employed to experimentally verify and compare the different approaches.
基金supported by the National Natural Science Foundation of China(Grant No.12172110)the Fundamental Research Funds for Central Universities,China(Grant No.AUGA9803500921).
文摘In this paper,the effect of Coulomb and dielectric forces on the onset of Rayleigh-Bénard convection(RBC)in a dielectric liquid layer contained between two parallel electrode plates has been numerically investigated.Two different operating conditions have been considered in electrohydrodynamic(EHD)conduction:ohmic and saturation,and variations in the physical properties of the dielectric fluid with temperature.The electric equations and the state equations based on the Boussinesq approximation are integrated in the framework of OpenFOAM buoyantBoussinesqPimpleFoam program.The results show that in the ohmic regime,the combined effect of Coulomb and dielectric forces promotes the onset of RBC flow,while in the saturation state,the inhibition of RBC flow by Coulomb force is more significant.The value of the critical Rayleigh number Ra decreases with increasing electric Reynolds number ReE in the ohmic regime,whereas in the saturation state,the critical Ra increases with increasing ReE.In the saturation regime,the flow field always has a steady flow in the range of parameters considered.However,the onset of the RBC flow promoted by the dielectric force is more pronounced in the ohmic state.Due to the presence of the dielectric force,the flow field exhibits periodic oscillatory flow at low electric Reynolds numbers for the range of parameters considered.
基金the European Research Council(ERC)under the European Union's Horizon 2020 research and innovation program(Nos.755655,ERC-StG 2017 project 2DTOPSENSE)the Ministry of Science and Innovation(Spain)through the project PID2020-115566RB-I00+5 种基金the EU FLAG-ERA project To2Dox under the program PCI2019-111893-2H.L.acknowledges the grant from China Scholarship Council(CSC)under No.201907040070Ana B.thanks the ERC Union's Horizon 2020 program(No.851929 StG 2019 project 3DScavengers)the Spanish Ministry of Science and Innovation AEI/10.13039/501100011033(No.PID2019-110430GB-C21)the EU ERDF(FEDER Operational Program(2014-2020)A way of making Europe)and the Consejería de Economía,Conocimiento,Empresas y Universidad de la Junta de Andalucía(Nos.P18-RT-3480,EMERGIA and US-1381057).
文摘Strain engineering,as a powerful strategy to tune the optical and electrical properties of two-dimensional(2D)materials by deforming their crystal lattice,has attracted significant interest in recent years.2D materials can sustain ultra-high strains,even up to 10%,due to the lack of dangling bonds on their surface,making them ideal brittle solids.This remarkable mechanical resilience,together with a strong strain-tunable band structure,endows 2D materials with a broad optical and electrical response upon strain.However,strain engineering based on 2D materials is restricted by their nanoscale and strain quantification troubles.In this study,we have modified a homebuilt three-points bending apparatus to transform it into a four-points bending apparatus that allows for the application of both compressive and tensile strains on 2D materials.This approach allows for the efficient and reproducible construction of a strain system and minimizes the buckling effect caused by the van der Waals interaction by adamantane encapsulation strategy.Our results demonstrate the feasibility of introducing compressive strain on 2D materials and the potential for tuning their optical and physical properties through this approach.
文摘Actually is recognized the importance of indoor air environment and associated health risks. In order to evaluate indoor air quality and to characterize the particles in terms of size, composition and shape were done measurements of the suspended particulate matter in a mechanical workshop of the Polytechnic University of Valencia (Spain). These measurements were performed using scanning electron microscope (SEM) with energy dispersive X-ray microanalysis (EDX) and image digital analysis. To differentiation of individual particles in the fine- ultrafine fraction, in some case, was used the atomic force microscopy (AFM). Multivariate statistics, such as hierarchical cluster analysis and factor analysis were appliqued and allowed to establish groups of elements and in this way to facilitate the identification of the natural and anthropogenic sources. It is confirmed that indoor air is influenced by outdoor surroundings and the anthropogenic sources due to the daily activity.
基金supported by the European Research Council(ERC)under the European Union’s Horizon 2020 research and innovation program(Grant Agreement No.851201,ATTOSTRUCTURA)the Ministerio de Ciencia de Innovación y Universidades(PID2020-117024GB-C41,PID2019-106910GB-I00,RYC-2017-22745)the Junta de Castilla y León FEDER(SA287P18).
文摘Ultrafast laser pulses provide unique tools to manipulate magnetization dynamics at femtosecond timescales,where the interaction of the electric field usually dominates over the magnetic field.Recent proposals using structured laser beams have demonstrated the possibility to produce regions where intense oscillating magnetic fields are isolated from the electric field.In these conditions,we show that technologically feasible tesla-scale circularly polarized high-frequency magnetic fields induce purely precessional nonlinear magnetization dynamics.This fundamental result not only opens an avenue in the study of laser-induced ultrafast magnetization dynamics,but also sustains technological implications as a route to promote all-optical non-thermal magnetization dynamics both at shorter timescales-towards the subfemtosecond regime-and at THz frequencies.
文摘Nowadays seakeeping is mostly analyzed by means of model testing or numerical models.Both require a significant amount of time and the exact hull geometry,and therefore seakeeping is not taken into account at the early stages of ship design.Hence the main objective of this work is the development of a seakeeping prediction tool to be used in the early stages of ship design.This tool must be fast,accurate,and not require the exact hull shape.To this end,an artificial intel-ligence(AI)algorithm has been developed.This algorithm is based on Artificial Neural Networks(ANNs)and only requires a number of ship coefficients of form.The methodology developed to obtain the predictive algorithm is presented as well as the database of ships used for training the ANN.The data were generated using a frequency domain seakeeping code based on the boundary element method(BEM).Also,the AI predictions are compared to the BEM results using both,ship hulls included and not included in the database.As a result of this work it has been obtained an AI tool for seakeeping prediction of conventional monohull vessels.
基金the financial support from CONACYT-México(No.248378)CONACYT-México for the fellowship 427467partially supported by the project "Fortalecimiento e internacionalización del doctorado en ciencias(Materiales Poliméricos)del CICY" FOMIX YUC 2014-C17-247046
文摘Two aromatic co-polyamides were synthesized combining two diacid monomers containing bulky pendant groups, 5-(9,10-dihydro-9,10-ethanoanthracene-11,12-dicarboximido)isophthalic acid(DEAIA) and 5-tert-butylisophthalic acid(TERT), with 4,4′-(hexafluoroisopropylidene)dianiline(HFA) or 2,3,5,6-tetramethyl-1,4-phenylenediamine(Durene) by direct polycondensation. The structures of the obtained aromatic co-polyamides were confirmed by FTIR, Raman and 1 H-NMR. The co-copolyamide films, DHTH and DDTD, exhibited rms-roughness values between 0.94 and 1.60 nm, respectively. Moreover, they presented good thermal stability up to300 °C. Young's moduli of the co-polyamide films were between 4.1 and 4.3 GPa. X-ray diffraction results showed that the co-polyamide films were amorphous due to the incorporation of both bulky pendant groups, tert-butyl and dibenzobarrelene. The combination of bulky pendant groups provided intrinsically transparent co-polyamide films with a transmittance higher than 88% in the range of 400-780 nm.Due to these outstanding film and optical properties, they are suggested to be flexible substrates in applications for solar cell and other portable electronic devices.
基金the National Natural Science Foundation of China(52071197)the Science and Technology Commission of Shanghai Municipality(19ZR1418300 and 19DZ2270200)+3 种基金AEI/FEDER-UE(PID2019-105720RB-I00)US/JUNTA/FEDER-UE(US-1260179)Consejería de Economía,Conocimiento,Empresas y Universidad de la Junta de Andalucía(P18-RT-746)the support provided by China Scholarship Council(CSC)of the Ministry of Education,China(202006890050)。
文摘Rare-earth(RE)rich intermetallics crystallizing in orthorhombic Ho_(6)Co_(2)Ga-type crystal structure exhibit peculiar magnetic properties that are not widely reported for their magnetic ordering,order of magnetic phase transition,and related magnetocaloric behavior.By tuning the type of RE element in RE_(6)Co_(2)Ga(RE=Ho,Dy or Gd)compounds,metamagnetic anti-to-paramagnetic(AF to PM)phase transitions could be tuned to ferro-to-paramagnetic(FM to PM)phase transitions.Furthermore,the FM ground state for Gd_(6)Co_(2)Ga is confirmed by density functional theory calculations in addition to experimental observations.The field dependence magnetocaloric and Banerjee’s criteria demonstrate that Ho_(6)Co_(2)Ga and Dy_(6)Co_(2)Ga undergo a first-order phase transition in addition to a second-order phase transition,whereas only the latter is observed for Gd_(6)Co_(2)Ga.The two extreme alloys of the series,Ho_(6)Co_(2)Ga and Gd_(6)Co_(2)Ga,show maximum isothermal entropy change(|ΔS_(iso)^(max)(5T)|)of 10.1 and 9.1 J kg^(-1)K^(-1)at 26 and 75 K,close to H_(2)and N_(2)liquefaction,respectively.This outstanding magnetocaloric effect performance makes the RE6 Co_(2)Ga series of potential for cryogenic magnetic refrigeration applications.
基金supported by project PNCB 10/09,Cuba,the Sabbatical program and projects CB 240460 and(LIDTRA)LN2015-254119 of CONACYT Mexico
文摘This study presents the photoluminescence characteristics of the PZT 53/47 system doped at A and/or B sites, with Nb(PZTN), La(PLZT), and Nb–La(PLZTN) in the concentration range from 0.2 to 1.0 molar fraction. The intensity of the emission bands of the system PZTN is two orders higher than the intensity of the emission bands of the systems PLZT and PLZTN, and these emission bands are located at 1.73 eV(718 nm), 2.56 eV(485 nm), and 2.93 eV(424 nm). The origin of the luminescence in these systems is associated with lead and oxygen vacancies produced during the sintering process. The results from X-ray diffraction(XRD) show a mixture of rhombohedral and tetragonal phases. The system PZTN shows a higher tetragonal phase concentration, while PLZT and PLZTN systems show a higher rhombohedral phase concentration. The cell volume shows an increase with dopant concentration only in the case of the PLZTN system. The band gap energy shows a small variation in the PZTN and PLZTN cases around 3.0 eV, a close value to the band gap energy of the pure PZT 53/47 sample. The system PLZT shows an increasing behavior until 4.41 eV for the higher dopant concentration.
基金supported by the by the Ministerio de Economía y Competitividad under project FIS2012-31079
文摘Several pupil filtering techniques have been developed in the last few years to obtain transverse superresolution (a narrower point spread function core). Such a core decrease entails two relevant limitations: a decrease of the peak intensity and an increase of the sidelobe intensity. Here, we calculate the Strehl ratio as a function of the core size for the most used binary phase filters. Furthermore, we show that this relation approaches the fundamental limit of the attainable Strehl ratio at the focal plane for any filter. Finally, we show the calculation of the peak-to-sidelobe ratio in order to check the system viability in every application.