Recent advances in spectral sensing techniques and machine learning(ML)methods have enabled the estimation of plant physiochemical traits.Nitrogen(N)is a primary limiting factor for terrestrial forest growth,but tradi...Recent advances in spectral sensing techniques and machine learning(ML)methods have enabled the estimation of plant physiochemical traits.Nitrogen(N)is a primary limiting factor for terrestrial forest growth,but traditional methods for N determination are labor-intensive,time-consuming,and destructive.In this study,we present a rapid,non-destructive method to predict leaf N concentration(LNC)in Metasequoia glyptostroboides plantations under N and phosphorus(P)fertilization using ML techniques and unmanned aerial vehicle(UAV)-based RGB(red,green,blue)images.Nine spectral vegetation indices(VIs)were extracted from the RGB images.The spectral reflectance and VIs were used as input features to construct models for estimating LNC based on support vector machine,ran-dom forest(RF),and multiple linear regression,gradient boosting regression and classification and regression trees(CART).The results show that RF is the best fitting model for estimating LNC with a coefficient of determination(R2)of 0.73.Using this model,we evaluated the effects of N and P treatments on LNC and found a significant increase with N and a decrease with P.Height,diameter at breast height(DBH),and crown width of all M.glyptostroboides were analyzed by Pearson correlation with the predicted LNC.DBH was significantly correlated with LNC under N treat-ment.Our results highlight the potential of combining UAV RGB images with an ML algorithm as an efficient,scalable,and cost-effective method for LNC quantification.Future research can extend this approach to different tree species and different plant traits,paving the way for large-scale,time-efficient plant growth monitoring.展开更多
Global climate change can affect tree growth and carbon sink function by influencing plant carbohydrate synthesis and utilization,while elevation can be used as an ideal setting under natural conditions to simulate cl...Global climate change can affect tree growth and carbon sink function by influencing plant carbohydrate synthesis and utilization,while elevation can be used as an ideal setting under natural conditions to simulate climate change effects.The effect of elevation on tree growth may depend on organ type.However,the allocation patterns of nonstructural and structural carbohydrates(NSCs and SCs,respectively)in different tree organs and their response to elevation remain unclear.We selected four dominant tree species,Schima superba,Castanopsis eyrei,Castanopsis fargesii and Michelia maudiae,along an elevation gradient from 609 to 1,207 m in subtropical evergreen broad-leaved forests and analyzed leaf,trunk,and fine root NSCs,carbon(C),nitrogen(N)and phosphorus(P)concentrations and the relative abundance of SCs.Leaf NSCs increased initially and then decreased,and trunk NSCs increased with increasing elevation.However,root NSCs decreased with increasing elevation.The relative abundance of SCs in leaves and trunks decreased,while the relative abundance of root SCs increased with increasing elevation.No significant correlations between SCs and NSCs in leaves were detected,while there were negative correlations between SCs and NSCs in trunks,roots,and all organs.Hierarchical partitioning analysis indicated that plant C/N and C/P were the main predictors of changes in SCs and NSCs.Our results suggest that tree organs have divergent responses to elevation and that increasing elevation will inhibit the aboveground part growth and enhance the root growth of trees.A tradeoff between the C distribution used for growth and storage was confirmed along the elevation gradient,which is mainly manifested in the"sink"organs of NSCs.Our results provide insight into tree growth in the context of global climate change scenarios in subtropical forest ecosystems.展开更多
The total biomass of a stand is an indicator of stand productivity and is closely related to the density of plants. According to the self-thinning law, mean individual biomass follows a negative power law with plant d...The total biomass of a stand is an indicator of stand productivity and is closely related to the density of plants. According to the self-thinning law, mean individual biomass follows a negative power law with plant density. If the variance of individual biomass is constant, we can expect increased stand productivity with increasing plant density. However, Taylor's power law(TPL) that relates the variance and the mean of many biological measures(e.g. bilateral areal differences of a leaf, plant biomass atdifferent times, developmental rates at different temperatures, population densities on different spatial or temporal scales), affects the estimate of stand productivity when it is defined as the total biomass of large plants in a stand.Because the variance of individual biomass decreases faster than mean individual biomass, differences in individual biomass decline with increasing density, leading to more homogeneous timbers of greater economic value. We tested whether TPL in plant biomass holds for different species and whether the variance of individual biomass changes faster than the mean with increasing stand density.The height, ground diameter and fresh weight of 50 bamboo species were measured in 50 stands ranging from 1 m by 1 m to 30 m by 30 m to ensure more than 150 bamboos in every stand. We separately examined TPL in height,ground diameter, and weight, and found that TPL holds for all three biological measures, with the relationship strongest for weight. Using analysis of covariance to compare the regression slopes of logarithmic mean and variance against the logarithm of density, we found that the variance in individual biomass declined faster than the mean with increasing density. This suggests that dense planting reduced mean individual biomass but homogenized individual biomass. Thus, there exists a trade-off between effective stand productivity and stand density for optimal forest management. Sparse planting leads to large variation in individual biomass, whereas dense planting reduces mean individual biomass. Consequently, stand density for a plantation should be set based on this trade-off with reference to market demands.展开更多
First-year seedling survival impacts all subsequent management planning in plantation forestry. Descriptive statistics of first-year seedling survival data from the Louisiana Department of Agriculture and Forestry (LD...First-year seedling survival impacts all subsequent management planning in plantation forestry. Descriptive statistics of first-year seedling survival data from the Louisiana Department of Agriculture and Forestry (LDAF) indicated that survival success reaches a plateau at between 79% - 85% under normal weather conditions. We provide an explanation for this plateau based on an analysis of seedling and microsite qualities involved in operational pine plantations by: 1) using a conceptual model demonstrating how variation in seedling quality and microsite quality interact to determine plantation survival, 2) presenting an example to characterize quality distributions of seedling and microsite qualities, and 3) comparing model outcomes based on measured distributions to realistic values of first-year survival. Simulation results indicated that consistent survival could result from random pairings of initial seedling and site quality distributions. LDAF data analysis indicated that 72% of seedlings were associated with the most frequent quality class that comprised seedlings with stem caliper between 3.2 to 4.7 mm and average stem height and volume of 25.75 cm and 3.43 cm3, respectively. Similarly, assessment of microsites at planting sites in Southeast Louisiana indicated that 48% of planted seedlings were associated with the most frequent microsite quality class which supported first-year height increment between 9 to 29 cm. Modelling of current operational practice indicated that using seedlings with larger caliper size would increase first year survival, but would result in higher establishment costs. The conceptual model could be modified to for use in other regions regardless of species types involved.展开更多
Arbuscular mycorrhizal fungi(AMF)form a near-ubiquitous mutualistic association with roots to help plants withstand harsh environments,and play a key role in the establishment of coastal beach plant communities.Yet li...Arbuscular mycorrhizal fungi(AMF)form a near-ubiquitous mutualistic association with roots to help plants withstand harsh environments,and play a key role in the establishment of coastal beach plant communities.Yet little is known about the structure and composition of AMF communities on coastal beaches of eastern China.In this study,we investigated the occurrence,community composition and diversity of AMF associated with common wild plants on a coastal beach of North Jiangsu,China.Almost all of the local wild species were colonized by AMF except for Chenopodium album L.Thirty-seven AMF species were isolated from the rhizosphere belonging to 12 genera in seven families.Glomus was the dominant genus and Funneliformis mosseae the dominant species.The colonization,spore composition and diversity of AMF were strongly related to edaphic factors.Sodium(Na^(+))ions in the soil significantly and negatively affected the colonization rate by AMF and both soil Na^(+)levels and pH had a significant negative effect on AMF spore density and evenness.However,there was a significant positive correlation between species richness and total organic carbon.The results provide insights into soil factors affecting native AMF communities in coastal beach habitats which could benefit vegetation recovery and soil reclamation efforts.展开更多
Under global climate change,high and low temperature extremes can drive shifts in species distributions.Across the range of a species,thermal tolerance is based on acclimatization,plasticity,and may undergo selection,...Under global climate change,high and low temperature extremes can drive shifts in species distributions.Across the range of a species,thermal tolerance is based on acclimatization,plasticity,and may undergo selection,shaping resilience to temperature stress.In this study,we measured variation in cold temperature tolerance of early instar larvae of an invasive forest insect,Lymantria dispar dispar L.(Lepidoptera:Erebidae),using populations sourced from a range of climates within the current introduced range in the Eastern United States.We tested for population differences in chill coma recovery(CCR)by measuring recovery time following a period of exposure to a nonlethal cold temperature in 2 cold exposure experiments.A 3rd experiment quantified growth responses after CCR to evaluate sublethal effects.Our results indicate that cold tolerance is linked to regional climate,with individuals from populations sourced from colder climates recovering faster from chill coma.While this geographic gradient is seen in many species,detecting this pattern is notable for an introduced species founded from a single point-source introduction.We demonstrate that the cold temperatures used in our experiments occur in nature during cold spells after spring egg hatch,but impacts to growth and survival appear low.We expect that population differences in cold temperature performance manifest more from differences in temperature-dependent growth than acute exposure.Evaluating intraspecific variation in cold tolerance increases our understanding of the role of climatic gradients on the physiology of an invasive species,and contributes to tools for predicting further expansion.展开更多
Background:To restore secondary forests(major forest resources worldwide),it is essential to accelerate the natural regeneration of dominant trees by altering micro-environments.Forest gaps are products of various dis...Background:To restore secondary forests(major forest resources worldwide),it is essential to accelerate the natural regeneration of dominant trees by altering micro-environments.Forest gaps are products of various disturbances,ranging from natural storms or wildfires to anthropogenic events like logging and slashing-andburning,and sprouts of most tree species with non-structural carbohydrates(NSCs)storage can regenerate from stumps after gap formation.However,how the stump sprouts with diverse NSCs storages and stump sizes(i.e.,diameters)adapt to various micro-environments of within-gap positions remains unclear.Therefore in this study,we monitored the stump sprout regeneration(density,survival,and growth)and NSCs concentrations of three dominant tree species with different shade tolerances and varying stump diameters at five within-gap positions for the first two consecutive years after gap formation.Results:Stump diameter was positively correlated with sprout density,growth,and survival of all three tree species,but insignificantly related with sprout NSCs concentrations at the early stage after gap formation.The effect of within-gap position on sprout NSCs concentrations was different among species.After an environmental adaptation of two growing seasons,the north of gap(higher light availability and lower soil moisture habitat)was the least conducive for shade-intolerant Quercus mongolica to accumulate leaf NSCs,and the east of gap(shadier and drier habitat)was conducive to increasing the leaf NSCs concentrations of shade-tolerant Tilia mandshurica.Conclusions:Within-gap position significantly affected leaf NSCs concentrations of all three tree species,but most of the sprout growth,survival,and stem NSCs concentrations were independent of the various within-gap positions.Besides stump diameter,the NSCs stored in stump and root systems and the interspecific differences in shade tolerance also contributed more in sprout regeneration at the early stage(2 years)of gap formation.A prolonged monitoring(>10 years)is needed to further examine the long-term effects of stump diameter and within-gap position on sprout regeneration.All of these findings could be applied to gap-based silviculture by promoting sprout regeneration of dominant tree species with different shade tolerances,which would help accelerate the restoration of temperate secondary forests.展开更多
The Universal Soil Loss Equation model is often used to improve soil resource conservation by monitoring and forecasting soil erosion.This study tested a novel method to determine the cover and management factor(C)of ...The Universal Soil Loss Equation model is often used to improve soil resource conservation by monitoring and forecasting soil erosion.This study tested a novel method to determine the cover and management factor(C)of this model by coupling the leaf area index(LAI)and soil basal respiration(SBR)to more accurately estimate a soil erosion map for a typical region with red soil in Hetian,Fujian Province,China.The spatial distribution of the LAI was obtained using the normalized difference vegetation index and was consistent with the LAI observed in the field(R^2=0.66).The spatial distribution of the SBR was obtained using the Carnegie-Ames-Stanford Approach model and verified by soil respiration field observations(R^2=0.51).Correlation analyses and regression models suggested that the LAI and SBR could reasonably reflect the structure of the forest canopy and understory vegetation,respectively.Finally,the C-factor was reconstructed using the proposed forest vegetation structure factor(Cs),which considers the effect of the forest canopy and shrub and litter layers on reducing rainfall erosion.The feasibility of this new method was thoroughly verified using runoff plots(R2=0.55).The results demonstrated that Cs may help local governments understand the vital role of the structure of the vegetation layer in limiting soil erosion and provide a more accurate large-scale quantification of the C-factor for soil erosion.展开更多
Individual tree detection and delineation(ITDD)is an important subject in forestry and urban forestry.This study represents the first research to propose the concept of crown resolution to comprehensively evaluate the...Individual tree detection and delineation(ITDD)is an important subject in forestry and urban forestry.This study represents the first research to propose the concept of crown resolution to comprehensively evaluate the co-effect of image resolution and crown size on deep learning.Six images with different resolutions were derived from a DJI Unmanned Aerial Vehicle(UAV),and 1344 manually delineated Chinese fir(Cunninghamia lanceolata(Lamb)Hook)tree crowns were used for six training and validation mask region-based convolutional neural network(Mask R-CNN)models,while additional 476 delineated tree crowns were reserved for testing.The overall detection accuracy,the influence of different crown sizes,and crown resolutions were calculated to evaluate model performance accuracy with different image resolutions for ITDD.Results show that the highest accuracy was achieved when the crown resolution was between 800 and 12800 pixels/tree.The accuracy of ITDD was impacted by crown resolution,and it was unable to effectively identify Chinese fir when the crown resolution was less than 25 pixels/tree or higher than 12800 pixels/tree.The study highlights crown resolution as a critical factor affecting ITDD and suggests selecting the appropriate resolution based on the target detected crown size.展开更多
Background Three-North Afforestation Program(TNAP)in China is the largest ecological restoration project on Earth(ongoing from 1978 to 2050),harboring a huge area of newly planted forests,which provides a wealth of go...Background Three-North Afforestation Program(TNAP)in China is the largest ecological restoration project on Earth(ongoing from 1978 to 2050),harboring a huge area of newly planted forests,which provides a wealth of goods and ecosystem services that benefit society at levels ranging from region to East Asia.This project-induced carbon(C)sink has been expected to be large,but its size and location remain uncertain.Results In this study,we investigated the changes in the C stocks of biomass,soil C and the C accumulation ben-efited from the ecological effects in the project areas from 1978 to 2017 within the Three-North regions(4.069×10^(6)km^(2)),and evaluated its project-induced C sequestration.Using a combination of remote sensing images,field obser-vations and national forest inventory data,we estimated a total ecosystem sink of 47.06 Tg C per year(1 Tg=10^(12)g)increased by the TNAP implementation.Importantly,we first found that the C sink via the ecological effects of this project could contribute to a high proportion up to 15.94%,indicating a critical role of ecological effects in shaping the distribution of C stocks in the protective forests.This finding suggests that it is necessary to explicitly consider carbon sequestration benefited from the ecological effects when estimating C sink and parameterizing C models of the restoration projects in China and globally.Conclusions Our results update the estimates of C pools in the world’s largest ecological restoration project area,demonstrating that this project has substantially contributed to mitigating the climate change.展开更多
Spatio-temporal patterns of flowering in forest ecosystems are hard to quantify and monitor. The objectives of this study were to investigate spatio-temporal patterns(e.g. soilssimple slope classesslope aspectand flo...Spatio-temporal patterns of flowering in forest ecosystems are hard to quantify and monitor. The objectives of this study were to investigate spatio-temporal patterns(e.g. soilssimple slope classesslope aspectand flow accumulation) of flowering around Lake IssaqueenaSouth Carolina(SCUSA) using plant-flowering database collected with GPS- enabled camera(stored in Picasa 3 web albums and project website) on a monthly basis in 2012 and Li DAR-based topography. Pacolet fine sandy loam had the most flowering plantsfollowed by Madison sandy loamboth dominant soil types around the lake. Most flowering plants were on moderately steep(17%–30%) and gently sloping(4%–8%) slopes. Most flowering plants were on west(247.5°–292.5°)southwest(202.5°–247.5°)and northwest(292.5°–337.5°) aspects. Most flowering plants were associated with minimum and maximum flows within the landscape. Chi-square tests indicated differences in the distributions of the proportions of flowering plants were significant by soil typeslopeaspectand flow accumulation for each month(February-November)for all months(overall)and across months. The Chi-square test on area-normalized data indicated significant differences for all months and individual differences by each month with some months not statistically significant. Cluster analysis on flowering counts for nine plant families with the most flowering counts indicated no unique separation by clusterbut implied that the majority of these families were flowering on strongly sloping(9%–16%) slopeson southwest(202.5°–247.5°) aspectsand low flow accumulation(0–200). Presented methodology can serve as a template for future efforts to quantify spatio-temporal patterns of flowering and other phenological events.展开更多
Background:Granivore-mediated seed dispersal is susceptible to changes in seed availability and silvicultural management,which alters synzoochorous interactions in the antagonism-mutualism continuum and affects the se...Background:Granivore-mediated seed dispersal is susceptible to changes in seed availability and silvicultural management,which alters synzoochorous interactions in the antagonism-mutualism continuum and affects the seed dispersal effectiveness(SDE),and eventually,the plant recruitment.We conducted a whole-year study of seed addi-tion to quantify the granivores-Korean pine(Pinus koraiensis)synzoochorous interactions and the SDE in the same sec-ondary forests with two treatments.Both treatments had seed source limitations:one was caused by the disappear-ance of Korean pine due to the historical disturbance,the other by pinecone harvesting in Korean pine plantations adjacent to the secondary forests.Thinning with different intensities(control,25%,and 50%)were also performed to further explore the synzoochorous interactions and SDE in response to silvicultural management in the second type of forests.Results:Source limitation increased the proportion of pre-and post-dispersal seed predation,and made the granivores-Korean pine interaction shift more towards antagonism,with the estimated SDE of 2.31 and 3.60,respec-tively,for the secondary forests without and with Korean pine.Thinning with different intensities did not alleviate the reactions towards antagonism but altered SDE;granivores occurrence decreased,but the proportion of pre-and post-dispersal seed predation increased,resulting in a fivefold decreased seedling recruitment in 25%thinning(the lowest SDE of 0.26).Conclusion:The source limitation coupling thinning biased the synzoochorous interactions more towards antago-nism and significantly lowered granivore-mediated SDE,which limited the successful recruitment of Korean pine in secondary forests.Forest managers should control pinecone harvesting,protect the synzoochorous interaction,and take into account masting event for Korean pine regeneration in the future.展开更多
基金supported by the“Pioneer”and“Leading Goose”R&D Program of Zhejiang(2022C02053)National Natural Science Foundation of China(NSFC)(32201632).
文摘Recent advances in spectral sensing techniques and machine learning(ML)methods have enabled the estimation of plant physiochemical traits.Nitrogen(N)is a primary limiting factor for terrestrial forest growth,but traditional methods for N determination are labor-intensive,time-consuming,and destructive.In this study,we present a rapid,non-destructive method to predict leaf N concentration(LNC)in Metasequoia glyptostroboides plantations under N and phosphorus(P)fertilization using ML techniques and unmanned aerial vehicle(UAV)-based RGB(red,green,blue)images.Nine spectral vegetation indices(VIs)were extracted from the RGB images.The spectral reflectance and VIs were used as input features to construct models for estimating LNC based on support vector machine,ran-dom forest(RF),and multiple linear regression,gradient boosting regression and classification and regression trees(CART).The results show that RF is the best fitting model for estimating LNC with a coefficient of determination(R2)of 0.73.Using this model,we evaluated the effects of N and P treatments on LNC and found a significant increase with N and a decrease with P.Height,diameter at breast height(DBH),and crown width of all M.glyptostroboides were analyzed by Pearson correlation with the predicted LNC.DBH was significantly correlated with LNC under N treat-ment.Our results highlight the potential of combining UAV RGB images with an ML algorithm as an efficient,scalable,and cost-effective method for LNC quantification.Future research can extend this approach to different tree species and different plant traits,paving the way for large-scale,time-efficient plant growth monitoring.
基金the National Natural Science Foundation of China(32260379&32371852)the Jiangxi Provincial Natural Science Foundation(20224ACB215005)
文摘Global climate change can affect tree growth and carbon sink function by influencing plant carbohydrate synthesis and utilization,while elevation can be used as an ideal setting under natural conditions to simulate climate change effects.The effect of elevation on tree growth may depend on organ type.However,the allocation patterns of nonstructural and structural carbohydrates(NSCs and SCs,respectively)in different tree organs and their response to elevation remain unclear.We selected four dominant tree species,Schima superba,Castanopsis eyrei,Castanopsis fargesii and Michelia maudiae,along an elevation gradient from 609 to 1,207 m in subtropical evergreen broad-leaved forests and analyzed leaf,trunk,and fine root NSCs,carbon(C),nitrogen(N)and phosphorus(P)concentrations and the relative abundance of SCs.Leaf NSCs increased initially and then decreased,and trunk NSCs increased with increasing elevation.However,root NSCs decreased with increasing elevation.The relative abundance of SCs in leaves and trunks decreased,while the relative abundance of root SCs increased with increasing elevation.No significant correlations between SCs and NSCs in leaves were detected,while there were negative correlations between SCs and NSCs in trunks,roots,and all organs.Hierarchical partitioning analysis indicated that plant C/N and C/P were the main predictors of changes in SCs and NSCs.Our results suggest that tree organs have divergent responses to elevation and that increasing elevation will inhibit the aboveground part growth and enhance the root growth of trees.A tradeoff between the C distribution used for growth and storage was confirmed along the elevation gradient,which is mainly manifested in the"sink"organs of NSCs.Our results provide insight into tree growth in the context of global climate change scenarios in subtropical forest ecosystems.
基金supported by the National Natural Science Foundation of China(31870575)the Key Project of National Science&Technology Ministry(No.2015BAD04B02)the Priority Academic Program Development of Jiangsu Higher Education Institutions。
文摘The total biomass of a stand is an indicator of stand productivity and is closely related to the density of plants. According to the self-thinning law, mean individual biomass follows a negative power law with plant density. If the variance of individual biomass is constant, we can expect increased stand productivity with increasing plant density. However, Taylor's power law(TPL) that relates the variance and the mean of many biological measures(e.g. bilateral areal differences of a leaf, plant biomass atdifferent times, developmental rates at different temperatures, population densities on different spatial or temporal scales), affects the estimate of stand productivity when it is defined as the total biomass of large plants in a stand.Because the variance of individual biomass decreases faster than mean individual biomass, differences in individual biomass decline with increasing density, leading to more homogeneous timbers of greater economic value. We tested whether TPL in plant biomass holds for different species and whether the variance of individual biomass changes faster than the mean with increasing stand density.The height, ground diameter and fresh weight of 50 bamboo species were measured in 50 stands ranging from 1 m by 1 m to 30 m by 30 m to ensure more than 150 bamboos in every stand. We separately examined TPL in height,ground diameter, and weight, and found that TPL holds for all three biological measures, with the relationship strongest for weight. Using analysis of covariance to compare the regression slopes of logarithmic mean and variance against the logarithm of density, we found that the variance in individual biomass declined faster than the mean with increasing density. This suggests that dense planting reduced mean individual biomass but homogenized individual biomass. Thus, there exists a trade-off between effective stand productivity and stand density for optimal forest management. Sparse planting leads to large variation in individual biomass, whereas dense planting reduces mean individual biomass. Consequently, stand density for a plantation should be set based on this trade-off with reference to market demands.
文摘First-year seedling survival impacts all subsequent management planning in plantation forestry. Descriptive statistics of first-year seedling survival data from the Louisiana Department of Agriculture and Forestry (LDAF) indicated that survival success reaches a plateau at between 79% - 85% under normal weather conditions. We provide an explanation for this plateau based on an analysis of seedling and microsite qualities involved in operational pine plantations by: 1) using a conceptual model demonstrating how variation in seedling quality and microsite quality interact to determine plantation survival, 2) presenting an example to characterize quality distributions of seedling and microsite qualities, and 3) comparing model outcomes based on measured distributions to realistic values of first-year survival. Simulation results indicated that consistent survival could result from random pairings of initial seedling and site quality distributions. LDAF data analysis indicated that 72% of seedlings were associated with the most frequent quality class that comprised seedlings with stem caliper between 3.2 to 4.7 mm and average stem height and volume of 25.75 cm and 3.43 cm3, respectively. Similarly, assessment of microsites at planting sites in Southeast Louisiana indicated that 48% of planted seedlings were associated with the most frequent microsite quality class which supported first-year height increment between 9 to 29 cm. Modelling of current operational practice indicated that using seedlings with larger caliper size would increase first year survival, but would result in higher establishment costs. The conceptual model could be modified to for use in other regions regardless of species types involved.
基金funded by the Agricultural Science and Technology Independent Innovation Fund of Jiangsu Province of China[Grant No.CX(17)004]the National Special Fund for Forestry Scientific Research in the Public Interest(Grant No.201504406)+2 种基金Major Fund for Natural Science of Jiangsu Higher Education Institutions(Grant No.15KJA220004)Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)the Doctorate Fellowship Foundation of Nanjing Forestry University(2169125)。
文摘Arbuscular mycorrhizal fungi(AMF)form a near-ubiquitous mutualistic association with roots to help plants withstand harsh environments,and play a key role in the establishment of coastal beach plant communities.Yet little is known about the structure and composition of AMF communities on coastal beaches of eastern China.In this study,we investigated the occurrence,community composition and diversity of AMF associated with common wild plants on a coastal beach of North Jiangsu,China.Almost all of the local wild species were colonized by AMF except for Chenopodium album L.Thirty-seven AMF species were isolated from the rhizosphere belonging to 12 genera in seven families.Glomus was the dominant genus and Funneliformis mosseae the dominant species.The colonization,spore composition and diversity of AMF were strongly related to edaphic factors.Sodium(Na^(+))ions in the soil significantly and negatively affected the colonization rate by AMF and both soil Na^(+)levels and pH had a significant negative effect on AMF spore density and evenness.However,there was a significant positive correlation between species richness and total organic carbon.The results provide insights into soil factors affecting native AMF communities in coastal beach habitats which could benefit vegetation recovery and soil reclamation efforts.
基金conducted under USDA APHIS permit numbers P526P-17-03681 and P526P-20-02026(K.L.G.)and P526P-16-04388(D.P.)supported by the National Science Foundation under Grant DEB 1702701(K.L.G.)and 1702312(D.P.)under the Macrosystems Biology Program and the Thomas F.and Kate Miller Jeffress Memorial Trust+1 种基金funding was provided by the Slow-the-Spread Foundationthe University of Richmond School of Arts&Sciences.
文摘Under global climate change,high and low temperature extremes can drive shifts in species distributions.Across the range of a species,thermal tolerance is based on acclimatization,plasticity,and may undergo selection,shaping resilience to temperature stress.In this study,we measured variation in cold temperature tolerance of early instar larvae of an invasive forest insect,Lymantria dispar dispar L.(Lepidoptera:Erebidae),using populations sourced from a range of climates within the current introduced range in the Eastern United States.We tested for population differences in chill coma recovery(CCR)by measuring recovery time following a period of exposure to a nonlethal cold temperature in 2 cold exposure experiments.A 3rd experiment quantified growth responses after CCR to evaluate sublethal effects.Our results indicate that cold tolerance is linked to regional climate,with individuals from populations sourced from colder climates recovering faster from chill coma.While this geographic gradient is seen in many species,detecting this pattern is notable for an introduced species founded from a single point-source introduction.We demonstrate that the cold temperatures used in our experiments occur in nature during cold spells after spring egg hatch,but impacts to growth and survival appear low.We expect that population differences in cold temperature performance manifest more from differences in temperature-dependent growth than acute exposure.Evaluating intraspecific variation in cold tolerance increases our understanding of the role of climatic gradients on the physiology of an invasive species,and contributes to tools for predicting further expansion.
基金supported by grants from the Strategic Leading Science&Technology Programme,CAS(XDA23070100)National Natural Science Foundation of China(U1808201,31330016)Liaoning Revitalization Talents Program(XLYC1807102).
文摘Background:To restore secondary forests(major forest resources worldwide),it is essential to accelerate the natural regeneration of dominant trees by altering micro-environments.Forest gaps are products of various disturbances,ranging from natural storms or wildfires to anthropogenic events like logging and slashing-andburning,and sprouts of most tree species with non-structural carbohydrates(NSCs)storage can regenerate from stumps after gap formation.However,how the stump sprouts with diverse NSCs storages and stump sizes(i.e.,diameters)adapt to various micro-environments of within-gap positions remains unclear.Therefore in this study,we monitored the stump sprout regeneration(density,survival,and growth)and NSCs concentrations of three dominant tree species with different shade tolerances and varying stump diameters at five within-gap positions for the first two consecutive years after gap formation.Results:Stump diameter was positively correlated with sprout density,growth,and survival of all three tree species,but insignificantly related with sprout NSCs concentrations at the early stage after gap formation.The effect of within-gap position on sprout NSCs concentrations was different among species.After an environmental adaptation of two growing seasons,the north of gap(higher light availability and lower soil moisture habitat)was the least conducive for shade-intolerant Quercus mongolica to accumulate leaf NSCs,and the east of gap(shadier and drier habitat)was conducive to increasing the leaf NSCs concentrations of shade-tolerant Tilia mandshurica.Conclusions:Within-gap position significantly affected leaf NSCs concentrations of all three tree species,but most of the sprout growth,survival,and stem NSCs concentrations were independent of the various within-gap positions.Besides stump diameter,the NSCs stored in stump and root systems and the interspecific differences in shade tolerance also contributed more in sprout regeneration at the early stage(2 years)of gap formation.A prolonged monitoring(>10 years)is needed to further examine the long-term effects of stump diameter and within-gap position on sprout regeneration.All of these findings could be applied to gap-based silviculture by promoting sprout regeneration of dominant tree species with different shade tolerances,which would help accelerate the restoration of temperate secondary forests.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.31770760 and 41401385)the scholarship program of China Scholarship Council(No.201908350124).
文摘The Universal Soil Loss Equation model is often used to improve soil resource conservation by monitoring and forecasting soil erosion.This study tested a novel method to determine the cover and management factor(C)of this model by coupling the leaf area index(LAI)and soil basal respiration(SBR)to more accurately estimate a soil erosion map for a typical region with red soil in Hetian,Fujian Province,China.The spatial distribution of the LAI was obtained using the normalized difference vegetation index and was consistent with the LAI observed in the field(R^2=0.66).The spatial distribution of the SBR was obtained using the Carnegie-Ames-Stanford Approach model and verified by soil respiration field observations(R^2=0.51).Correlation analyses and regression models suggested that the LAI and SBR could reasonably reflect the structure of the forest canopy and understory vegetation,respectively.Finally,the C-factor was reconstructed using the proposed forest vegetation structure factor(Cs),which considers the effect of the forest canopy and shrub and litter layers on reducing rainfall erosion.The feasibility of this new method was thoroughly verified using runoff plots(R2=0.55).The results demonstrated that Cs may help local governments understand the vital role of the structure of the vegetation layer in limiting soil erosion and provide a more accurate large-scale quantification of the C-factor for soil erosion.
基金supported by the Natural Science Foundation of Fujian Province,China:[grant no grant number 2023J05183]the Education and Research Project for Youth Scholars of Education Department of Fujian Province,China:[grant no grant number JAT220206]the Scientific Research Foundation of Minnan Normal University:[grant no grant number KJ2022001].
文摘Individual tree detection and delineation(ITDD)is an important subject in forestry and urban forestry.This study represents the first research to propose the concept of crown resolution to comprehensively evaluate the co-effect of image resolution and crown size on deep learning.Six images with different resolutions were derived from a DJI Unmanned Aerial Vehicle(UAV),and 1344 manually delineated Chinese fir(Cunninghamia lanceolata(Lamb)Hook)tree crowns were used for six training and validation mask region-based convolutional neural network(Mask R-CNN)models,while additional 476 delineated tree crowns were reserved for testing.The overall detection accuracy,the influence of different crown sizes,and crown resolutions were calculated to evaluate model performance accuracy with different image resolutions for ITDD.Results show that the highest accuracy was achieved when the crown resolution was between 800 and 12800 pixels/tree.The accuracy of ITDD was impacted by crown resolution,and it was unable to effectively identify Chinese fir when the crown resolution was less than 25 pixels/tree or higher than 12800 pixels/tree.The study highlights crown resolution as a critical factor affecting ITDD and suggests selecting the appropriate resolution based on the target detected crown size.
基金supported by grants from National Key R&D Program of China(2020YFA0608100)CAS Key Research Program of Frontier Sciences(QYZDJ-SSW-DQC027)+2 种基金National Natural Science Foundation of China(31025007)the Knowledge Innovation Program of Chinese Academy of Sciences(KZCX1-YW-08-02)the Consultation Project supported by Divisions of the Chinese Academy of Sciences(2019-ZW09-A-032).
文摘Background Three-North Afforestation Program(TNAP)in China is the largest ecological restoration project on Earth(ongoing from 1978 to 2050),harboring a huge area of newly planted forests,which provides a wealth of goods and ecosystem services that benefit society at levels ranging from region to East Asia.This project-induced carbon(C)sink has been expected to be large,but its size and location remain uncertain.Results In this study,we investigated the changes in the C stocks of biomass,soil C and the C accumulation ben-efited from the ecological effects in the project areas from 1978 to 2017 within the Three-North regions(4.069×10^(6)km^(2)),and evaluated its project-induced C sequestration.Using a combination of remote sensing images,field obser-vations and national forest inventory data,we estimated a total ecosystem sink of 47.06 Tg C per year(1 Tg=10^(12)g)increased by the TNAP implementation.Importantly,we first found that the C sink via the ecological effects of this project could contribute to a high proportion up to 15.94%,indicating a critical role of ecological effects in shaping the distribution of C stocks in the protective forests.This finding suggests that it is necessary to explicitly consider carbon sequestration benefited from the ecological effects when estimating C sink and parameterizing C models of the restoration projects in China and globally.Conclusions Our results update the estimates of C pools in the world’s largest ecological restoration project area,demonstrating that this project has substantially contributed to mitigating the climate change.
基金funding from Clemson University.This is technical contribution No.6345 of the Clemson University Experiment Stationsupported by NIFA/USDA,under project number SC-1700452
文摘Spatio-temporal patterns of flowering in forest ecosystems are hard to quantify and monitor. The objectives of this study were to investigate spatio-temporal patterns(e.g. soilssimple slope classesslope aspectand flow accumulation) of flowering around Lake IssaqueenaSouth Carolina(SCUSA) using plant-flowering database collected with GPS- enabled camera(stored in Picasa 3 web albums and project website) on a monthly basis in 2012 and Li DAR-based topography. Pacolet fine sandy loam had the most flowering plantsfollowed by Madison sandy loamboth dominant soil types around the lake. Most flowering plants were on moderately steep(17%–30%) and gently sloping(4%–8%) slopes. Most flowering plants were on west(247.5°–292.5°)southwest(202.5°–247.5°)and northwest(292.5°–337.5°) aspects. Most flowering plants were associated with minimum and maximum flows within the landscape. Chi-square tests indicated differences in the distributions of the proportions of flowering plants were significant by soil typeslopeaspectand flow accumulation for each month(February-November)for all months(overall)and across months. The Chi-square test on area-normalized data indicated significant differences for all months and individual differences by each month with some months not statistically significant. Cluster analysis on flowering counts for nine plant families with the most flowering counts indicated no unique separation by clusterbut implied that the majority of these families were flowering on strongly sloping(9%–16%) slopeson southwest(202.5°–247.5°) aspectsand low flow accumulation(0–200). Presented methodology can serve as a template for future efforts to quantify spatio-temporal patterns of flowering and other phenological events.
基金supported by the National Natural Science Foundation of China(U1808201,31830016)K.C.Wong Education Foundation(GJTD-2018-07)Liaoning Revitalization Talents Program(XLYC1807102).
文摘Background:Granivore-mediated seed dispersal is susceptible to changes in seed availability and silvicultural management,which alters synzoochorous interactions in the antagonism-mutualism continuum and affects the seed dispersal effectiveness(SDE),and eventually,the plant recruitment.We conducted a whole-year study of seed addi-tion to quantify the granivores-Korean pine(Pinus koraiensis)synzoochorous interactions and the SDE in the same sec-ondary forests with two treatments.Both treatments had seed source limitations:one was caused by the disappear-ance of Korean pine due to the historical disturbance,the other by pinecone harvesting in Korean pine plantations adjacent to the secondary forests.Thinning with different intensities(control,25%,and 50%)were also performed to further explore the synzoochorous interactions and SDE in response to silvicultural management in the second type of forests.Results:Source limitation increased the proportion of pre-and post-dispersal seed predation,and made the granivores-Korean pine interaction shift more towards antagonism,with the estimated SDE of 2.31 and 3.60,respec-tively,for the secondary forests without and with Korean pine.Thinning with different intensities did not alleviate the reactions towards antagonism but altered SDE;granivores occurrence decreased,but the proportion of pre-and post-dispersal seed predation increased,resulting in a fivefold decreased seedling recruitment in 25%thinning(the lowest SDE of 0.26).Conclusion:The source limitation coupling thinning biased the synzoochorous interactions more towards antago-nism and significantly lowered granivore-mediated SDE,which limited the successful recruitment of Korean pine in secondary forests.Forest managers should control pinecone harvesting,protect the synzoochorous interaction,and take into account masting event for Korean pine regeneration in the future.