In traditional digital twin communication system testing,we can apply test cases as completely as possible in order to ensure the correctness of the system implementation,and even then,there is no guarantee that the d...In traditional digital twin communication system testing,we can apply test cases as completely as possible in order to ensure the correctness of the system implementation,and even then,there is no guarantee that the digital twin communication system implementation is completely correct.Formal verification is currently recognized as a method to ensure the correctness of software system for communication in digital twins because it uses rigorous mathematical methods to verify the correctness of systems for communication in digital twins and can effectively help system designers determine whether the system is designed and implemented correctly.In this paper,we use the interactive theorem proving tool Isabelle/HOL to construct the formal model of the X86 architecture,and to model the related assembly instructions.The verification result shows that the system states obtained after the operations of relevant assembly instructions is consistent with the expected states,indicating that the system meets the design expectations.展开更多
The recent development of the Internet of Things(IoTs)resulted in the growth of IoT-based DDoS attacks.The detection of Botnet in IoT systems implements advanced cybersecurity measures to detect and reduce malevolent ...The recent development of the Internet of Things(IoTs)resulted in the growth of IoT-based DDoS attacks.The detection of Botnet in IoT systems implements advanced cybersecurity measures to detect and reduce malevolent botnets in interconnected devices.Anomaly detection models evaluate transmission patterns,network traffic,and device behaviour to detect deviations from usual activities.Machine learning(ML)techniques detect patterns signalling botnet activity,namely sudden traffic increase,unusual command and control patterns,or irregular device behaviour.In addition,intrusion detection systems(IDSs)and signature-based techniques are applied to recognize known malware signatures related to botnets.Various ML and deep learning(DL)techniques have been developed to detect botnet attacks in IoT systems.To overcome security issues in an IoT environment,this article designs a gorilla troops optimizer with DL-enabled botnet attack detection and classification(GTODL-BADC)technique.The GTODL-BADC technique follows feature selection(FS)with optimal DL-based classification for accomplishing security in an IoT environment.For data preprocessing,the min-max data normalization approach is primarily used.The GTODL-BADC technique uses the GTO algorithm to select features and elect optimal feature subsets.Moreover,the multi-head attention-based long short-term memory(MHA-LSTM)technique was applied for botnet detection.Finally,the tree seed algorithm(TSA)was used to select the optimum hyperparameter for the MHA-LSTM method.The experimental validation of the GTODL-BADC technique can be tested on a benchmark dataset.The simulation results highlighted that the GTODL-BADC technique demonstrates promising performance in the botnet detection process.展开更多
Colletotrichum kahawae(Coffee Berry Disease)spreads through spores that can be carried by wind,rain,and insects affecting coffee plantations,and causes 80%yield losses and poor-quality coffee beans.The deadly disease ...Colletotrichum kahawae(Coffee Berry Disease)spreads through spores that can be carried by wind,rain,and insects affecting coffee plantations,and causes 80%yield losses and poor-quality coffee beans.The deadly disease is hard to control because wind,rain,and insects carry spores.Colombian researchers utilized a deep learning system to identify CBD in coffee cherries at three growth stages and classify photographs of infected and uninfected cherries with 93%accuracy using a random forest method.If the dataset is too small and noisy,the algorithm may not learn data patterns and generate accurate predictions.To overcome the existing challenge,early detection of Colletotrichum Kahawae disease in coffee cherries requires automated processes,prompt recognition,and accurate classifications.The proposed methodology selects CBD image datasets through four different stages for training and testing.XGBoost to train a model on datasets of coffee berries,with each image labeled as healthy or diseased.Once themodel is trained,SHAP algorithmto figure out which features were essential formaking predictions with the proposed model.Some of these characteristics were the cherry’s colour,whether it had spots or other damage,and how big the Lesions were.Virtual inception is important for classification to virtualize the relationship between the colour of the berry is correlated with the presence of disease.To evaluate themodel’s performance andmitigate excess fitting,a 10-fold cross-validation approach is employed.This involves partitioning the dataset into ten subsets,training the model on each subset,and evaluating its performance.In comparison to other contemporary methodologies,the model put forth achieved an accuracy of 98.56%.展开更多
The proliferation of IoT devices requires innovative approaches to gaining insights while preserving privacy and resources amid unprecedented data generation.However,FL development for IoT is still in its infancy and ...The proliferation of IoT devices requires innovative approaches to gaining insights while preserving privacy and resources amid unprecedented data generation.However,FL development for IoT is still in its infancy and needs to be explored in various areas to understand the key challenges for deployment in real-world scenarios.The paper systematically reviewed the available literature using the PRISMA guiding principle.The study aims to provide a detailed overview of the increasing use of FL in IoT networks,including the architecture and challenges.A systematic review approach is used to collect,categorize and analyze FL-IoT-based articles.Asearch was performed in the IEEE,Elsevier,Arxiv,ACM,and WOS databases and 92 articles were finally examined.Inclusion measures were published in English and with the keywords“FL”and“IoT”.The methodology begins with an overview of recent advances in FL and the IoT,followed by a discussion of how these two technologies can be integrated.To be more specific,we examine and evaluate the capabilities of FL by talking about communication protocols,frameworks and architecture.We then present a comprehensive analysis of the use of FL in a number of key IoT applications,including smart healthcare,smart transportation,smart cities,smart industry,smart finance,and smart agriculture.The key findings from this analysis of FL IoT services and applications are also presented.Finally,we performed a comparative analysis with FL IID(independent and identical data)and non-ID,traditional centralized deep learning(DL)approaches.We concluded that FL has better performance,especially in terms of privacy protection and resource utilization.FL is excellent for preserving privacy becausemodel training takes place on individual devices or edge nodes,eliminating the need for centralized data aggregation,which poses significant privacy risks.To facilitate development in this rapidly evolving field,the insights presented are intended to help practitioners and researchers navigate the complex terrain of FL and IoT.展开更多
Computer vision(CV)was developed for computers and other systems to act or make recommendations based on visual inputs,such as digital photos,movies,and other media.Deep learning(DL)methods are more successful than ot...Computer vision(CV)was developed for computers and other systems to act or make recommendations based on visual inputs,such as digital photos,movies,and other media.Deep learning(DL)methods are more successful than other traditional machine learning(ML)methods inCV.DL techniques can produce state-of-the-art results for difficult CV problems like picture categorization,object detection,and face recognition.In this review,a structured discussion on the history,methods,and applications of DL methods to CV problems is presented.The sector-wise presentation of applications in this papermay be particularly useful for researchers in niche fields who have limited or introductory knowledge of DL methods and CV.This review will provide readers with context and examples of how these techniques can be applied to specific areas.A curated list of popular datasets and a brief description of them are also included for the benefit of readers.展开更多
In healthcare,the persistent challenge of arrhythmias,a leading cause of global mortality,has sparked extensive research into the automation of detection using machine learning(ML)algorithms.However,traditional ML and...In healthcare,the persistent challenge of arrhythmias,a leading cause of global mortality,has sparked extensive research into the automation of detection using machine learning(ML)algorithms.However,traditional ML and AutoML approaches have revealed their limitations,notably regarding feature generalization and automation efficiency.This glaring research gap has motivated the development of AutoRhythmAI,an innovative solution that integrates both machine and deep learning to revolutionize the diagnosis of arrhythmias.Our approach encompasses two distinct pipelines tailored for binary-class and multi-class arrhythmia detection,effectively bridging the gap between data preprocessing and model selection.To validate our system,we have rigorously tested AutoRhythmAI using a multimodal dataset,surpassing the accuracy achieved using a single dataset and underscoring the robustness of our methodology.In the first pipeline,we employ signal filtering and ML algorithms for preprocessing,followed by data balancing and split for training.The second pipeline is dedicated to feature extraction and classification,utilizing deep learning models.Notably,we introduce the‘RRI-convoluted trans-former model’as a novel addition for binary-class arrhythmias.An ensemble-based approach then amalgamates all models,considering their respective weights,resulting in an optimal model pipeline.In our study,the VGGRes Model achieved impressive results in multi-class arrhythmia detection,with an accuracy of 97.39%and firm performance in precision(82.13%),recall(31.91%),and F1-score(82.61%).In the binary-class task,the proposed model achieved an outstanding accuracy of 96.60%.These results highlight the effectiveness of our approach in improving arrhythmia detection,with notably high accuracy and well-balanced performance metrics.展开更多
The widespread and growing interest in the Internet of Things(IoT)may be attributed to its usefulness in many different fields.Physical settings are probed for data,which is then transferred via linked networks.There ...The widespread and growing interest in the Internet of Things(IoT)may be attributed to its usefulness in many different fields.Physical settings are probed for data,which is then transferred via linked networks.There are several hurdles to overcome when putting IoT into practice,from managing server infrastructure to coordinating the use of tiny sensors.When it comes to deploying IoT,everyone agrees that security is the biggest issue.This is due to the fact that a large number of IoT devices exist in the physicalworld and thatmany of themhave constrained resources such as electricity,memory,processing power,and square footage.This research intends to analyse resource-constrained IoT devices,including RFID tags,sensors,and smart cards,and the issues involved with protecting them in such restricted circumstances.Using lightweight cryptography,the information sent between these gadgets may be secured.In order to provide a holistic picture,this research evaluates and contrasts well-known algorithms based on their implementation cost,hardware/software efficiency,and attack resistance features.We also emphasised how essential lightweight encryption is for striking a good cost-to-performance-to-security ratio.展开更多
The context of recognizing handwritten city names,this research addresses the challenges posed by the manual inscription of Bangladeshi city names in the Bangla script.In today’s technology-driven era,where precise t...The context of recognizing handwritten city names,this research addresses the challenges posed by the manual inscription of Bangladeshi city names in the Bangla script.In today’s technology-driven era,where precise tools for reading handwritten text are essential,this study focuses on leveraging deep learning to understand the intricacies of Bangla handwriting.The existing dearth of dedicated datasets has impeded the progress of Bangla handwritten city name recognition systems,particularly in critical areas such as postal automation and document processing.Notably,no prior research has specifically targeted the unique needs of Bangla handwritten city name recognition.To bridge this gap,the study collects real-world images from diverse sources to construct a comprehensive dataset for Bangla Hand Written City name recognition.The emphasis on practical data for system training enhances accuracy.The research further conducts a comparative analysis,pitting state-of-the-art(SOTA)deep learning models,including EfficientNetB0,VGG16,ResNet50,DenseNet201,InceptionV3,and Xception,against a custom Convolutional Neural Networks(CNN)model named“Our CNN.”The results showcase the superior performance of“Our CNN,”with a test accuracy of 99.97% and an outstanding F1 score of 99.95%.These metrics underscore its potential for automating city name recognition,particularly in postal services.The study concludes by highlighting the significance of meticulous dataset curation and the promising outlook for custom CNN architectures.It encourages future research avenues,including dataset expansion,algorithm refinement,exploration of recurrent neural networks and attention mechanisms,real-world deployment of models,and extension to other regional languages and scripts.These recommendations offer exciting possibilities for advancing the field of handwritten recognition technology and hold practical implications for enhancing global postal services.展开更多
Effort estimation plays a crucial role in software development projects,aiding in resource allocation,project planning,and risk management.Traditional estimation techniques often struggle to provide accurate estimates...Effort estimation plays a crucial role in software development projects,aiding in resource allocation,project planning,and risk management.Traditional estimation techniques often struggle to provide accurate estimates due to the complex nature of software projects.In recent years,machine learning approaches have shown promise in improving the accuracy of effort estimation models.This study proposes a hybrid model that combines Long Short-Term Memory(LSTM)and Random Forest(RF)algorithms to enhance software effort estimation.The proposed hybrid model takes advantage of the strengths of both LSTM and RF algorithms.To evaluate the performance of the hybrid model,an extensive set of software development projects is used as the experimental dataset.The experimental results demonstrate that the proposed hybrid model outperforms traditional estimation techniques in terms of accuracy and reliability.The integration of LSTM and RF enables the model to efficiently capture temporal dependencies and non-linear interactions in the software development data.The hybrid model enhances estimation accuracy,enabling project managers and stakeholders to make more precise predictions of effort needed for upcoming software projects.展开更多
Chronic kidney disease(CKD)is a major health concern today,requiring early and accurate diagnosis.Machine learning has emerged as a powerful tool for disease detection,and medical professionals are increasingly using ...Chronic kidney disease(CKD)is a major health concern today,requiring early and accurate diagnosis.Machine learning has emerged as a powerful tool for disease detection,and medical professionals are increasingly using ML classifier algorithms to identify CKD early.This study explores the application of advanced machine learning techniques on a CKD dataset obtained from the University of California,UC Irvine Machine Learning repository.The research introduces TrioNet,an ensemble model combining extreme gradient boosting,random forest,and extra tree classifier,which excels in providing highly accurate predictions for CKD.Furthermore,K nearest neighbor(KNN)imputer is utilized to deal withmissing values while synthetic minority oversampling(SMOTE)is used for class-imbalance problems.To ascertain the efficacy of the proposed model,a comprehensive comparative analysis is conducted with various machine learning models.The proposed TrioNet using KNN imputer and SMOTE outperformed other models with 98.97%accuracy for detectingCKD.This in-depth analysis demonstrates the model’s capabilities and underscores its potential as a valuable tool in the diagnosis of CKD.展开更多
BACKGROUND The treatment of acute respiratory distress syndrome(ARDS)complicated by sepsis syndrome(SS)remains challenging.AIM To investigate whether combined adipose-derived mesenchymal-stem-cells(ADMSCs)-derived exo...BACKGROUND The treatment of acute respiratory distress syndrome(ARDS)complicated by sepsis syndrome(SS)remains challenging.AIM To investigate whether combined adipose-derived mesenchymal-stem-cells(ADMSCs)-derived exosome(EXAD)and exogenous mitochondria(mitoEx)protect the lung from ARDS complicated by SS.METHODS In vitro study,including L2 cells treated with lipopolysaccharide(LPS)and in vivo study including male-adult-SD rats categorized into groups 1(sham-operated-control),2(ARDS-SS),3(ARDS-SS+EXAD),4(ARDS-SS+mitoEx),and 5(ARDS-SS+EXAD+mitoEx),were included in the present study.RESULTS In vitro study showed an abundance of mitoEx found in recipient-L2 cells,resulting in significantly higher mitochondrial-cytochrome-C,adenosine triphosphate and relative mitochondrial DNA levels(P<0.001).The protein levels of inflammation[interleukin(IL)-1β/tumor necrosis factor(TNF)-α/nuclear factor-κB/toll-like receptor(TLR)-4/matrix-metalloproteinase(MMP)-9/oxidative-stress(NOX-1/NOX-2)/apoptosis(cleaved-caspase3/cleaved-poly(ADP-ribose)polymerase)]were significantly attenuated in lipopolysaccharide(LPS)-treated L2 cells with EXAD treatment than without EXAD treatment,whereas the protein expressions of cellular junctions[occluding/β-catenin/zonula occludens(ZO)-1/E-cadherin]exhibited an opposite pattern of inflam-mation(all P<0.001).Animals were euthanized by 72 h post-48 h-ARDS induction,and lung tissues were harvested.By 72 h,flow cytometric analysis of bronchoalveolar lavage fluid demonstrated that the levels of inflam-matory cells(Ly6G+/CD14+/CD68+/CD11b/c+/myeloperoxidase+)and albumin were lowest in group 1,highest in group 2,and significantly higher in groups 3 and 4 than in group 5(all P<0.0001),whereas arterial oxygen-saturation(SaO2%)displayed an opposite pattern of albumin among the groups.Histopathological findings of lung injury/fibrosis area and inflammatory/DNA-damaged markers(CD68+/γ-H2AX)displayed an identical pattern of SaO2%among the groups(all P<0.0001).The protein expressions of inflammatory(TLR-4/MMP-9/IL-1β/TNF-α)/oxidative stress(NOX-1/NOX-2/p22phox/oxidized protein)/mitochondrial-damaged(cytosolic-cytochrome-C/dynamin-related protein 1)/autophagic(beclin-1/Atg-5/ratio of LC3B-II/LC3B-I)biomarkers exhibited a similar manner,whereas antioxidants[nuclear respiratory factor(Nrf)-1/Nrf-2]/cellular junctions(ZO-1/E-cadherin)/mitochondrial electron transport chain(complex I-V)exhibited an opposite manner of albumin among the groups(all P<0.0001).CONCLUSION Combined EXAD-mitoEx therapy was better than merely one for protecting the lung against ARDS-SS induced injury.展开更多
NGLY1 Deficiency is an ultra-rare autosomal recessively inherited disorder. Characteristic symptoms include among others, developmental delays, movement disorders, liver function abnormalities, seizures, and problems ...NGLY1 Deficiency is an ultra-rare autosomal recessively inherited disorder. Characteristic symptoms include among others, developmental delays, movement disorders, liver function abnormalities, seizures, and problems with tear formation. Movements are hyperkinetic and may include dysmetric, choreo-athetoid, myoclonic and dystonic movement elements. To date, there have been no quantitative reports describing arm movements of individuals with NGLY1 Deficiency. This report provides quantitative information about a series of arm movements performed by an individual with NGLY1 Deficiency and an aged-matched neurotypical participant. Three categories of arm movements were tested: 1) open ended reaches without specific end point targets;2) goal-directed reaches that included grasping an object;3) picking up small objects from a table placed in front of the participants. Arm movement kinematics were obtained with a camera-based motion analysis system and “initiation” and “maintenance” phases were identified for each movement. The combination of the two phases was labeled as a “complete” movement. Three-dimensional analysis techniques were used to quantify the movements and included hand trajectory pathlength, joint motion area, as well as hand trajectory and joint jerk cost. These techniques were required to fully characterize the movements because the NGLY1 individual was unable to perform movements only in the primary plane of progression instead producing motion across all three planes of movement. The individual with NGLY1 Deficiency was unable to pick up objects from a table or effectively complete movements requiring crossing the midline. The successfully completed movements were analyzed using the above techniques and the results of the two participants were compared statistically. Almost all comparisons revealed significant differences between the two participants, with a notable exception of the 3D initiation area as a percentage of the complete movement. The statistical tests of these measures revealed no significant differences between the two participants, possibly suggesting a common underlying motor control strategy. The 3D techniques used in this report effectively characterized arm movements of an individual with NGLY1 deficiency and can be used to provide information to evaluate the effectiveness of genetic, pharmacological, or physical rehabilitation therapies.展开更多
Over the last couple of decades,community question-answering sites(CQAs)have been a topic of much academic interest.Scholars have often leveraged traditional machine learning(ML)and deep learning(DL)to explore the eve...Over the last couple of decades,community question-answering sites(CQAs)have been a topic of much academic interest.Scholars have often leveraged traditional machine learning(ML)and deep learning(DL)to explore the ever-growing volume of content that CQAs engender.To clarify the current state of the CQA literature that has used ML and DL,this paper reports a systematic literature review.The goal is to summarise and synthesise the major themes of CQA research related to(i)questions,(ii)answers and(iii)users.The final review included 133 articles.Dominant research themes include question quality,answer quality,and expert identification.In terms of dataset,some of the most widely studied platforms include Yahoo!Answers,Stack Exchange and Stack Overflow.The scope of most articles was confined to just one platform with few cross-platform investigations.Articles with ML outnumber those with DL.Nonetheless,the use of DL in CQA research is on an upward trajectory.A number of research directions are proposed.展开更多
In recent years,the exponential proliferation of smart devices with their intelligent applications poses severe challenges on conventional cellular networks.Such challenges can be potentially overcome by integrating c...In recent years,the exponential proliferation of smart devices with their intelligent applications poses severe challenges on conventional cellular networks.Such challenges can be potentially overcome by integrating communication,computing,caching,and control(i4C)technologies.In this survey,we first give a snapshot of different aspects of the i4C,comprising background,motivation,leading technological enablers,potential applications,and use cases.Next,we describe different models of communication,computing,caching,and control(4C)to lay the foundation of the integration approach.We review current stateof-the-art research efforts related to the i4C,focusing on recent trends of both conventional and artificial intelligence(AI)-based integration approaches.We also highlight the need for intelligence in resources integration.Then,we discuss the integration of sensing and communication(ISAC)and classify the integration approaches into various classes.Finally,we propose open challenges and present future research directions for beyond 5G networks,such as 6G.展开更多
Electric smart grids enable a bidirectional flow of electricity and information among power system assets.For proper monitoring and con-trolling of power quality,reliability,scalability and flexibility,there is a need...Electric smart grids enable a bidirectional flow of electricity and information among power system assets.For proper monitoring and con-trolling of power quality,reliability,scalability and flexibility,there is a need for an environmentally friendly system that is transparent,sustainable,cost-saving,energy-efficient,agile and secure.This paper provides an overview of the emerging technologies behind smart grids and the internet of things.The dependent variables are identified by analyzing the electricity consumption patterns for optimal utilization and planning preventive maintenance of their legacy assets like power distribution transformers with real-time parameters to ensure an uninterrupted and reliable power supply.In addition,the paper sorts out challenges in the traditional or legacy electricity grid,power generation,transmission,distribution,and revenue management challenges such as reduc-ing aggregate technical and commercial loss by reforming the existing manual or semi-automatic techniques to fully smart or automatic systems.This article represents a concise review of research works in creating components of the smart grid like smart metering infrastructure for postpaid as well as in prepaid mode,internal structure comparison of advanced metering methods in present scenarios,and communication systems.展开更多
Recently,computation offloading has become an effective method for overcoming the constraint of a mobile device(MD)using computationintensivemobile and offloading delay-sensitive application tasks to the remote cloud-...Recently,computation offloading has become an effective method for overcoming the constraint of a mobile device(MD)using computationintensivemobile and offloading delay-sensitive application tasks to the remote cloud-based data center.Smart city benefitted from offloading to edge point.Consider a mobile edge computing(MEC)network in multiple regions.They comprise N MDs and many access points,in which everyMDhasM independent real-time tasks.This study designs a new Task Offloading and Resource Allocation in IoT-based MEC using Deep Learning with Seagull Optimization(TORA-DLSGO)algorithm.The proposed TORA-DLSGO technique addresses the resource management issue in the MEC server,which enables an optimum offloading decision to minimize the system cost.In addition,an objective function is derived based on minimizing energy consumption subject to the latency requirements and restricted resources.The TORA-DLSGO technique uses the deep belief network(DBN)model for optimum offloading decision-making.Finally,the SGO algorithm is used for the parameter tuning of the DBN model.The simulation results exemplify that the TORA-DLSGO technique outperformed the existing model in reducing client overhead in the MEC systems with a maximum reward of 0.8967.展开更多
Android devices are popularly available in the commercial market at different price levels for various levels of customers.The Android stack is more vulnerable compared to other platforms because of its open-source na...Android devices are popularly available in the commercial market at different price levels for various levels of customers.The Android stack is more vulnerable compared to other platforms because of its open-source nature.There are many android malware detection techniques available to exploit the source code andfind associated components during execution time.To obtain a better result we create a hybrid technique merging static and dynamic processes.In this paper,in thefirst part,we have proposed a technique to check for correlation between features and classify using a supervised learning approach to avoid Mul-ticollinearity problem is one of the drawbacks in the existing system.In the proposed work,a novel PCA(Principal Component Analysis)based feature reduction technique is implemented with conditional dependency features by gathering the functionalities of the application which adds novelty for the given approach.The Android Sensitive Permission is one major key point to be considered while detecting malware.We select vulnerable columns based on features like sensitive permissions,application program interface calls,services requested through the kernel,and the relationship between the variables henceforth build the model using machine learning classifiers and identify whether the given application is malicious or benign.Thefinal goal of this paper is to check benchmarking datasets collected from various repositories like virus share,Github,and the Canadian Institute of cyber security,compare with models ensuring zero-day exploits can be monitored and detected with better accuracy rate.展开更多
The Brain Tumor(BT)is created by an uncontrollable rise of anomalous cells in brain tissue,and it consists of 2 types of cancers they are malignant and benign tumors.The benevolent BT does not affect the neighbouring ...The Brain Tumor(BT)is created by an uncontrollable rise of anomalous cells in brain tissue,and it consists of 2 types of cancers they are malignant and benign tumors.The benevolent BT does not affect the neighbouring healthy and normal tissue;however,the malignant could affect the adjacent brain tissues,which results in death.Initial recognition of BT is highly significant to protecting the patient’s life.Generally,the BT can be identified through the magnetic resonance imaging(MRI)scanning technique.But the radiotherapists are not offering effective tumor segmentation in MRI images because of the position and unequal shape of the tumor in the brain.Recently,ML has prevailed against standard image processing techniques.Several studies denote the superiority of machine learning(ML)techniques over standard techniques.Therefore,this study develops novel brain tumor detection and classification model using met heuristic optimization with machine learning(BTDC-MOML)model.To accomplish the detection of brain tumor effectively,a Computer-Aided Design(CAD)model using Machine Learning(ML)technique is proposed in this research manuscript.Initially,the input image pre-processing is performed using Gaborfiltering(GF)based noise removal,contrast enhancement,and skull stripping.Next,mayfly optimization with the Kapur’s thresholding based segmentation process takes place.For feature extraction proposes,local diagonal extreme patterns(LDEP)are exploited.At last,the Extreme Gradient Boosting(XGBoost)model can be used for the BT classification process.The accuracy analysis is performed in terms of Learning accuracy,and the validation accuracy is performed to determine the efficiency of the proposed research work.The experimental validation of the proposed model demonstrates its promising performance over other existing methods.展开更多
Presently,precision agriculture processes like plant disease,crop yield prediction,species recognition,weed detection,and irrigation can be accom-plished by the use of computer vision(CV)approaches.Weed plays a vital ...Presently,precision agriculture processes like plant disease,crop yield prediction,species recognition,weed detection,and irrigation can be accom-plished by the use of computer vision(CV)approaches.Weed plays a vital role in influencing crop productivity.The wastage and pollution of farmland's natural atmosphere instigated by full coverage chemical herbicide spraying are increased.Since the proper identification of weeds from crops helps to reduce the usage of herbicide and improve productivity,this study presents a novel computer vision and deep learning based weed detection and classification(CVDL-WDC)model for precision agriculture.The proposed CVDL-WDC technique intends to prop-erly discriminate the plants as well as weeds.The proposed CVDL-WDC technique involves two processes namely multiscale Faster RCNN based object detection and optimal extreme learning machine(ELM)based weed classification.The parameters of the ELM model are optimally adjusted by the use of farmland fertility optimization(FFO)algorithm.A comprehensive simulation analysis of the CVDL-WDC technique against benchmark dataset reported the enhanced out-comes over its recent approaches interms of several measures.展开更多
While single-modal visible light images or infrared images provide limited information,infrared light captures significant thermal radiation data,whereas visible light excels in presenting detailed texture information...While single-modal visible light images or infrared images provide limited information,infrared light captures significant thermal radiation data,whereas visible light excels in presenting detailed texture information.Com-bining images obtained from both modalities allows for leveraging their respective strengths and mitigating individual limitations,resulting in high-quality images with enhanced contrast and rich texture details.Such capabilities hold promising applications in advanced visual tasks including target detection,instance segmentation,military surveillance,pedestrian detection,among others.This paper introduces a novel approach,a dual-branch decomposition fusion network based on AutoEncoder(AE),which decomposes multi-modal features into intensity and texture information for enhanced fusion.Local contrast enhancement module(CEM)and texture detail enhancement module(DEM)are devised to process the decomposed images,followed by image fusion through the decoder.The proposed loss function ensures effective retention of key information from the source images of both modalities.Extensive comparisons and generalization experiments demonstrate the superior performance of our network in preserving pixel intensity distribution and retaining texture details.From the qualitative results,we can see the advantages of fusion details and local contrast.In the quantitative experiments,entropy(EN),mutual information(MI),structural similarity(SSIM)and other results have improved and exceeded the SOTA(State of the Art)model as a whole.展开更多
基金supported in part by the Natural Science Foundation of Jiangsu Province in China under grant No.BK20191475the fifth phase of“333 Project”scientific research funding project of Jiangsu Province in China under grant No.BRA2020306the Qing Lan Project of Jiangsu Province in China under grant No.2019.
文摘In traditional digital twin communication system testing,we can apply test cases as completely as possible in order to ensure the correctness of the system implementation,and even then,there is no guarantee that the digital twin communication system implementation is completely correct.Formal verification is currently recognized as a method to ensure the correctness of software system for communication in digital twins because it uses rigorous mathematical methods to verify the correctness of systems for communication in digital twins and can effectively help system designers determine whether the system is designed and implemented correctly.In this paper,we use the interactive theorem proving tool Isabelle/HOL to construct the formal model of the X86 architecture,and to model the related assembly instructions.The verification result shows that the system states obtained after the operations of relevant assembly instructions is consistent with the expected states,indicating that the system meets the design expectations.
文摘The recent development of the Internet of Things(IoTs)resulted in the growth of IoT-based DDoS attacks.The detection of Botnet in IoT systems implements advanced cybersecurity measures to detect and reduce malevolent botnets in interconnected devices.Anomaly detection models evaluate transmission patterns,network traffic,and device behaviour to detect deviations from usual activities.Machine learning(ML)techniques detect patterns signalling botnet activity,namely sudden traffic increase,unusual command and control patterns,or irregular device behaviour.In addition,intrusion detection systems(IDSs)and signature-based techniques are applied to recognize known malware signatures related to botnets.Various ML and deep learning(DL)techniques have been developed to detect botnet attacks in IoT systems.To overcome security issues in an IoT environment,this article designs a gorilla troops optimizer with DL-enabled botnet attack detection and classification(GTODL-BADC)technique.The GTODL-BADC technique follows feature selection(FS)with optimal DL-based classification for accomplishing security in an IoT environment.For data preprocessing,the min-max data normalization approach is primarily used.The GTODL-BADC technique uses the GTO algorithm to select features and elect optimal feature subsets.Moreover,the multi-head attention-based long short-term memory(MHA-LSTM)technique was applied for botnet detection.Finally,the tree seed algorithm(TSA)was used to select the optimum hyperparameter for the MHA-LSTM method.The experimental validation of the GTODL-BADC technique can be tested on a benchmark dataset.The simulation results highlighted that the GTODL-BADC technique demonstrates promising performance in the botnet detection process.
基金support from the Deanship for Research&Innovation,Ministry of Education in Saudi Arabia,under the Auspices of Project Number:IFP22UQU4281768DSR122.
文摘Colletotrichum kahawae(Coffee Berry Disease)spreads through spores that can be carried by wind,rain,and insects affecting coffee plantations,and causes 80%yield losses and poor-quality coffee beans.The deadly disease is hard to control because wind,rain,and insects carry spores.Colombian researchers utilized a deep learning system to identify CBD in coffee cherries at three growth stages and classify photographs of infected and uninfected cherries with 93%accuracy using a random forest method.If the dataset is too small and noisy,the algorithm may not learn data patterns and generate accurate predictions.To overcome the existing challenge,early detection of Colletotrichum Kahawae disease in coffee cherries requires automated processes,prompt recognition,and accurate classifications.The proposed methodology selects CBD image datasets through four different stages for training and testing.XGBoost to train a model on datasets of coffee berries,with each image labeled as healthy or diseased.Once themodel is trained,SHAP algorithmto figure out which features were essential formaking predictions with the proposed model.Some of these characteristics were the cherry’s colour,whether it had spots or other damage,and how big the Lesions were.Virtual inception is important for classification to virtualize the relationship between the colour of the berry is correlated with the presence of disease.To evaluate themodel’s performance andmitigate excess fitting,a 10-fold cross-validation approach is employed.This involves partitioning the dataset into ten subsets,training the model on each subset,and evaluating its performance.In comparison to other contemporary methodologies,the model put forth achieved an accuracy of 98.56%.
文摘The proliferation of IoT devices requires innovative approaches to gaining insights while preserving privacy and resources amid unprecedented data generation.However,FL development for IoT is still in its infancy and needs to be explored in various areas to understand the key challenges for deployment in real-world scenarios.The paper systematically reviewed the available literature using the PRISMA guiding principle.The study aims to provide a detailed overview of the increasing use of FL in IoT networks,including the architecture and challenges.A systematic review approach is used to collect,categorize and analyze FL-IoT-based articles.Asearch was performed in the IEEE,Elsevier,Arxiv,ACM,and WOS databases and 92 articles were finally examined.Inclusion measures were published in English and with the keywords“FL”and“IoT”.The methodology begins with an overview of recent advances in FL and the IoT,followed by a discussion of how these two technologies can be integrated.To be more specific,we examine and evaluate the capabilities of FL by talking about communication protocols,frameworks and architecture.We then present a comprehensive analysis of the use of FL in a number of key IoT applications,including smart healthcare,smart transportation,smart cities,smart industry,smart finance,and smart agriculture.The key findings from this analysis of FL IoT services and applications are also presented.Finally,we performed a comparative analysis with FL IID(independent and identical data)and non-ID,traditional centralized deep learning(DL)approaches.We concluded that FL has better performance,especially in terms of privacy protection and resource utilization.FL is excellent for preserving privacy becausemodel training takes place on individual devices or edge nodes,eliminating the need for centralized data aggregation,which poses significant privacy risks.To facilitate development in this rapidly evolving field,the insights presented are intended to help practitioners and researchers navigate the complex terrain of FL and IoT.
基金supported by the Project SP2023/074 Application of Machine and Process Control Advanced Methods supported by the Ministry of Education,Youth and Sports,Czech Republic.
文摘Computer vision(CV)was developed for computers and other systems to act or make recommendations based on visual inputs,such as digital photos,movies,and other media.Deep learning(DL)methods are more successful than other traditional machine learning(ML)methods inCV.DL techniques can produce state-of-the-art results for difficult CV problems like picture categorization,object detection,and face recognition.In this review,a structured discussion on the history,methods,and applications of DL methods to CV problems is presented.The sector-wise presentation of applications in this papermay be particularly useful for researchers in niche fields who have limited or introductory knowledge of DL methods and CV.This review will provide readers with context and examples of how these techniques can be applied to specific areas.A curated list of popular datasets and a brief description of them are also included for the benefit of readers.
文摘In healthcare,the persistent challenge of arrhythmias,a leading cause of global mortality,has sparked extensive research into the automation of detection using machine learning(ML)algorithms.However,traditional ML and AutoML approaches have revealed their limitations,notably regarding feature generalization and automation efficiency.This glaring research gap has motivated the development of AutoRhythmAI,an innovative solution that integrates both machine and deep learning to revolutionize the diagnosis of arrhythmias.Our approach encompasses two distinct pipelines tailored for binary-class and multi-class arrhythmia detection,effectively bridging the gap between data preprocessing and model selection.To validate our system,we have rigorously tested AutoRhythmAI using a multimodal dataset,surpassing the accuracy achieved using a single dataset and underscoring the robustness of our methodology.In the first pipeline,we employ signal filtering and ML algorithms for preprocessing,followed by data balancing and split for training.The second pipeline is dedicated to feature extraction and classification,utilizing deep learning models.Notably,we introduce the‘RRI-convoluted trans-former model’as a novel addition for binary-class arrhythmias.An ensemble-based approach then amalgamates all models,considering their respective weights,resulting in an optimal model pipeline.In our study,the VGGRes Model achieved impressive results in multi-class arrhythmia detection,with an accuracy of 97.39%and firm performance in precision(82.13%),recall(31.91%),and F1-score(82.61%).In the binary-class task,the proposed model achieved an outstanding accuracy of 96.60%.These results highlight the effectiveness of our approach in improving arrhythmia detection,with notably high accuracy and well-balanced performance metrics.
基金supported by project TRANSACT funded under H2020-EU.2.1.1.-INDUSTRIAL LEADERSHIP-Leadership in Enabling and Industrial Technologies-Information and Communication Technologies(Grant Agreement ID:101007260).
文摘The widespread and growing interest in the Internet of Things(IoT)may be attributed to its usefulness in many different fields.Physical settings are probed for data,which is then transferred via linked networks.There are several hurdles to overcome when putting IoT into practice,from managing server infrastructure to coordinating the use of tiny sensors.When it comes to deploying IoT,everyone agrees that security is the biggest issue.This is due to the fact that a large number of IoT devices exist in the physicalworld and thatmany of themhave constrained resources such as electricity,memory,processing power,and square footage.This research intends to analyse resource-constrained IoT devices,including RFID tags,sensors,and smart cards,and the issues involved with protecting them in such restricted circumstances.Using lightweight cryptography,the information sent between these gadgets may be secured.In order to provide a holistic picture,this research evaluates and contrasts well-known algorithms based on their implementation cost,hardware/software efficiency,and attack resistance features.We also emphasised how essential lightweight encryption is for striking a good cost-to-performance-to-security ratio.
基金MMU Postdoctoral and Research Fellow(Account:MMUI/230023.02).
文摘The context of recognizing handwritten city names,this research addresses the challenges posed by the manual inscription of Bangladeshi city names in the Bangla script.In today’s technology-driven era,where precise tools for reading handwritten text are essential,this study focuses on leveraging deep learning to understand the intricacies of Bangla handwriting.The existing dearth of dedicated datasets has impeded the progress of Bangla handwritten city name recognition systems,particularly in critical areas such as postal automation and document processing.Notably,no prior research has specifically targeted the unique needs of Bangla handwritten city name recognition.To bridge this gap,the study collects real-world images from diverse sources to construct a comprehensive dataset for Bangla Hand Written City name recognition.The emphasis on practical data for system training enhances accuracy.The research further conducts a comparative analysis,pitting state-of-the-art(SOTA)deep learning models,including EfficientNetB0,VGG16,ResNet50,DenseNet201,InceptionV3,and Xception,against a custom Convolutional Neural Networks(CNN)model named“Our CNN.”The results showcase the superior performance of“Our CNN,”with a test accuracy of 99.97% and an outstanding F1 score of 99.95%.These metrics underscore its potential for automating city name recognition,particularly in postal services.The study concludes by highlighting the significance of meticulous dataset curation and the promising outlook for custom CNN architectures.It encourages future research avenues,including dataset expansion,algorithm refinement,exploration of recurrent neural networks and attention mechanisms,real-world deployment of models,and extension to other regional languages and scripts.These recommendations offer exciting possibilities for advancing the field of handwritten recognition technology and hold practical implications for enhancing global postal services.
文摘Effort estimation plays a crucial role in software development projects,aiding in resource allocation,project planning,and risk management.Traditional estimation techniques often struggle to provide accurate estimates due to the complex nature of software projects.In recent years,machine learning approaches have shown promise in improving the accuracy of effort estimation models.This study proposes a hybrid model that combines Long Short-Term Memory(LSTM)and Random Forest(RF)algorithms to enhance software effort estimation.The proposed hybrid model takes advantage of the strengths of both LSTM and RF algorithms.To evaluate the performance of the hybrid model,an extensive set of software development projects is used as the experimental dataset.The experimental results demonstrate that the proposed hybrid model outperforms traditional estimation techniques in terms of accuracy and reliability.The integration of LSTM and RF enables the model to efficiently capture temporal dependencies and non-linear interactions in the software development data.The hybrid model enhances estimation accuracy,enabling project managers and stakeholders to make more precise predictions of effort needed for upcoming software projects.
基金funded by Princess Nourah bint Abdulrahman University Researchers Supporting Project Number PNURSP2024R333,Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.
文摘Chronic kidney disease(CKD)is a major health concern today,requiring early and accurate diagnosis.Machine learning has emerged as a powerful tool for disease detection,and medical professionals are increasingly using ML classifier algorithms to identify CKD early.This study explores the application of advanced machine learning techniques on a CKD dataset obtained from the University of California,UC Irvine Machine Learning repository.The research introduces TrioNet,an ensemble model combining extreme gradient boosting,random forest,and extra tree classifier,which excels in providing highly accurate predictions for CKD.Furthermore,K nearest neighbor(KNN)imputer is utilized to deal withmissing values while synthetic minority oversampling(SMOTE)is used for class-imbalance problems.To ascertain the efficacy of the proposed model,a comprehensive comparative analysis is conducted with various machine learning models.The proposed TrioNet using KNN imputer and SMOTE outperformed other models with 98.97%accuracy for detectingCKD.This in-depth analysis demonstrates the model’s capabilities and underscores its potential as a valuable tool in the diagnosis of CKD.
文摘BACKGROUND The treatment of acute respiratory distress syndrome(ARDS)complicated by sepsis syndrome(SS)remains challenging.AIM To investigate whether combined adipose-derived mesenchymal-stem-cells(ADMSCs)-derived exosome(EXAD)and exogenous mitochondria(mitoEx)protect the lung from ARDS complicated by SS.METHODS In vitro study,including L2 cells treated with lipopolysaccharide(LPS)and in vivo study including male-adult-SD rats categorized into groups 1(sham-operated-control),2(ARDS-SS),3(ARDS-SS+EXAD),4(ARDS-SS+mitoEx),and 5(ARDS-SS+EXAD+mitoEx),were included in the present study.RESULTS In vitro study showed an abundance of mitoEx found in recipient-L2 cells,resulting in significantly higher mitochondrial-cytochrome-C,adenosine triphosphate and relative mitochondrial DNA levels(P<0.001).The protein levels of inflammation[interleukin(IL)-1β/tumor necrosis factor(TNF)-α/nuclear factor-κB/toll-like receptor(TLR)-4/matrix-metalloproteinase(MMP)-9/oxidative-stress(NOX-1/NOX-2)/apoptosis(cleaved-caspase3/cleaved-poly(ADP-ribose)polymerase)]were significantly attenuated in lipopolysaccharide(LPS)-treated L2 cells with EXAD treatment than without EXAD treatment,whereas the protein expressions of cellular junctions[occluding/β-catenin/zonula occludens(ZO)-1/E-cadherin]exhibited an opposite pattern of inflam-mation(all P<0.001).Animals were euthanized by 72 h post-48 h-ARDS induction,and lung tissues were harvested.By 72 h,flow cytometric analysis of bronchoalveolar lavage fluid demonstrated that the levels of inflam-matory cells(Ly6G+/CD14+/CD68+/CD11b/c+/myeloperoxidase+)and albumin were lowest in group 1,highest in group 2,and significantly higher in groups 3 and 4 than in group 5(all P<0.0001),whereas arterial oxygen-saturation(SaO2%)displayed an opposite pattern of albumin among the groups.Histopathological findings of lung injury/fibrosis area and inflammatory/DNA-damaged markers(CD68+/γ-H2AX)displayed an identical pattern of SaO2%among the groups(all P<0.0001).The protein expressions of inflammatory(TLR-4/MMP-9/IL-1β/TNF-α)/oxidative stress(NOX-1/NOX-2/p22phox/oxidized protein)/mitochondrial-damaged(cytosolic-cytochrome-C/dynamin-related protein 1)/autophagic(beclin-1/Atg-5/ratio of LC3B-II/LC3B-I)biomarkers exhibited a similar manner,whereas antioxidants[nuclear respiratory factor(Nrf)-1/Nrf-2]/cellular junctions(ZO-1/E-cadherin)/mitochondrial electron transport chain(complex I-V)exhibited an opposite manner of albumin among the groups(all P<0.0001).CONCLUSION Combined EXAD-mitoEx therapy was better than merely one for protecting the lung against ARDS-SS induced injury.
文摘NGLY1 Deficiency is an ultra-rare autosomal recessively inherited disorder. Characteristic symptoms include among others, developmental delays, movement disorders, liver function abnormalities, seizures, and problems with tear formation. Movements are hyperkinetic and may include dysmetric, choreo-athetoid, myoclonic and dystonic movement elements. To date, there have been no quantitative reports describing arm movements of individuals with NGLY1 Deficiency. This report provides quantitative information about a series of arm movements performed by an individual with NGLY1 Deficiency and an aged-matched neurotypical participant. Three categories of arm movements were tested: 1) open ended reaches without specific end point targets;2) goal-directed reaches that included grasping an object;3) picking up small objects from a table placed in front of the participants. Arm movement kinematics were obtained with a camera-based motion analysis system and “initiation” and “maintenance” phases were identified for each movement. The combination of the two phases was labeled as a “complete” movement. Three-dimensional analysis techniques were used to quantify the movements and included hand trajectory pathlength, joint motion area, as well as hand trajectory and joint jerk cost. These techniques were required to fully characterize the movements because the NGLY1 individual was unable to perform movements only in the primary plane of progression instead producing motion across all three planes of movement. The individual with NGLY1 Deficiency was unable to pick up objects from a table or effectively complete movements requiring crossing the midline. The successfully completed movements were analyzed using the above techniques and the results of the two participants were compared statistically. Almost all comparisons revealed significant differences between the two participants, with a notable exception of the 3D initiation area as a percentage of the complete movement. The statistical tests of these measures revealed no significant differences between the two participants, possibly suggesting a common underlying motor control strategy. The 3D techniques used in this report effectively characterized arm movements of an individual with NGLY1 deficiency and can be used to provide information to evaluate the effectiveness of genetic, pharmacological, or physical rehabilitation therapies.
文摘Over the last couple of decades,community question-answering sites(CQAs)have been a topic of much academic interest.Scholars have often leveraged traditional machine learning(ML)and deep learning(DL)to explore the ever-growing volume of content that CQAs engender.To clarify the current state of the CQA literature that has used ML and DL,this paper reports a systematic literature review.The goal is to summarise and synthesise the major themes of CQA research related to(i)questions,(ii)answers and(iii)users.The final review included 133 articles.Dominant research themes include question quality,answer quality,and expert identification.In terms of dataset,some of the most widely studied platforms include Yahoo!Answers,Stack Exchange and Stack Overflow.The scope of most articles was confined to just one platform with few cross-platform investigations.Articles with ML outnumber those with DL.Nonetheless,the use of DL in CQA research is on an upward trajectory.A number of research directions are proposed.
基金supported in part by National Key R&D Program of China(2019YFE0196400)Key Research and Development Program of Shaanxi(2022KWZ09)+4 种基金National Natural Science Foundation of China(61771358,61901317,62071352)Fundamental Research Funds for the Central Universities(JB190104)Joint Education Project between China and Central-Eastern European Countries(202005)the 111 Project(B08038)。
文摘In recent years,the exponential proliferation of smart devices with their intelligent applications poses severe challenges on conventional cellular networks.Such challenges can be potentially overcome by integrating communication,computing,caching,and control(i4C)technologies.In this survey,we first give a snapshot of different aspects of the i4C,comprising background,motivation,leading technological enablers,potential applications,and use cases.Next,we describe different models of communication,computing,caching,and control(4C)to lay the foundation of the integration approach.We review current stateof-the-art research efforts related to the i4C,focusing on recent trends of both conventional and artificial intelligence(AI)-based integration approaches.We also highlight the need for intelligence in resources integration.Then,we discuss the integration of sensing and communication(ISAC)and classify the integration approaches into various classes.Finally,we propose open challenges and present future research directions for beyond 5G networks,such as 6G.
基金supported by Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(2021R1A6A1A03043144)Woosong University Academic Research in 2022.
文摘Electric smart grids enable a bidirectional flow of electricity and information among power system assets.For proper monitoring and con-trolling of power quality,reliability,scalability and flexibility,there is a need for an environmentally friendly system that is transparent,sustainable,cost-saving,energy-efficient,agile and secure.This paper provides an overview of the emerging technologies behind smart grids and the internet of things.The dependent variables are identified by analyzing the electricity consumption patterns for optimal utilization and planning preventive maintenance of their legacy assets like power distribution transformers with real-time parameters to ensure an uninterrupted and reliable power supply.In addition,the paper sorts out challenges in the traditional or legacy electricity grid,power generation,transmission,distribution,and revenue management challenges such as reduc-ing aggregate technical and commercial loss by reforming the existing manual or semi-automatic techniques to fully smart or automatic systems.This article represents a concise review of research works in creating components of the smart grid like smart metering infrastructure for postpaid as well as in prepaid mode,internal structure comparison of advanced metering methods in present scenarios,and communication systems.
基金supported by the Technology Development Program of MSS(No.S3033853).
文摘Recently,computation offloading has become an effective method for overcoming the constraint of a mobile device(MD)using computationintensivemobile and offloading delay-sensitive application tasks to the remote cloud-based data center.Smart city benefitted from offloading to edge point.Consider a mobile edge computing(MEC)network in multiple regions.They comprise N MDs and many access points,in which everyMDhasM independent real-time tasks.This study designs a new Task Offloading and Resource Allocation in IoT-based MEC using Deep Learning with Seagull Optimization(TORA-DLSGO)algorithm.The proposed TORA-DLSGO technique addresses the resource management issue in the MEC server,which enables an optimum offloading decision to minimize the system cost.In addition,an objective function is derived based on minimizing energy consumption subject to the latency requirements and restricted resources.The TORA-DLSGO technique uses the deep belief network(DBN)model for optimum offloading decision-making.Finally,the SGO algorithm is used for the parameter tuning of the DBN model.The simulation results exemplify that the TORA-DLSGO technique outperformed the existing model in reducing client overhead in the MEC systems with a maximum reward of 0.8967.
文摘Android devices are popularly available in the commercial market at different price levels for various levels of customers.The Android stack is more vulnerable compared to other platforms because of its open-source nature.There are many android malware detection techniques available to exploit the source code andfind associated components during execution time.To obtain a better result we create a hybrid technique merging static and dynamic processes.In this paper,in thefirst part,we have proposed a technique to check for correlation between features and classify using a supervised learning approach to avoid Mul-ticollinearity problem is one of the drawbacks in the existing system.In the proposed work,a novel PCA(Principal Component Analysis)based feature reduction technique is implemented with conditional dependency features by gathering the functionalities of the application which adds novelty for the given approach.The Android Sensitive Permission is one major key point to be considered while detecting malware.We select vulnerable columns based on features like sensitive permissions,application program interface calls,services requested through the kernel,and the relationship between the variables henceforth build the model using machine learning classifiers and identify whether the given application is malicious or benign.Thefinal goal of this paper is to check benchmarking datasets collected from various repositories like virus share,Github,and the Canadian Institute of cyber security,compare with models ensuring zero-day exploits can be monitored and detected with better accuracy rate.
文摘The Brain Tumor(BT)is created by an uncontrollable rise of anomalous cells in brain tissue,and it consists of 2 types of cancers they are malignant and benign tumors.The benevolent BT does not affect the neighbouring healthy and normal tissue;however,the malignant could affect the adjacent brain tissues,which results in death.Initial recognition of BT is highly significant to protecting the patient’s life.Generally,the BT can be identified through the magnetic resonance imaging(MRI)scanning technique.But the radiotherapists are not offering effective tumor segmentation in MRI images because of the position and unequal shape of the tumor in the brain.Recently,ML has prevailed against standard image processing techniques.Several studies denote the superiority of machine learning(ML)techniques over standard techniques.Therefore,this study develops novel brain tumor detection and classification model using met heuristic optimization with machine learning(BTDC-MOML)model.To accomplish the detection of brain tumor effectively,a Computer-Aided Design(CAD)model using Machine Learning(ML)technique is proposed in this research manuscript.Initially,the input image pre-processing is performed using Gaborfiltering(GF)based noise removal,contrast enhancement,and skull stripping.Next,mayfly optimization with the Kapur’s thresholding based segmentation process takes place.For feature extraction proposes,local diagonal extreme patterns(LDEP)are exploited.At last,the Extreme Gradient Boosting(XGBoost)model can be used for the BT classification process.The accuracy analysis is performed in terms of Learning accuracy,and the validation accuracy is performed to determine the efficiency of the proposed research work.The experimental validation of the proposed model demonstrates its promising performance over other existing methods.
文摘Presently,precision agriculture processes like plant disease,crop yield prediction,species recognition,weed detection,and irrigation can be accom-plished by the use of computer vision(CV)approaches.Weed plays a vital role in influencing crop productivity.The wastage and pollution of farmland's natural atmosphere instigated by full coverage chemical herbicide spraying are increased.Since the proper identification of weeds from crops helps to reduce the usage of herbicide and improve productivity,this study presents a novel computer vision and deep learning based weed detection and classification(CVDL-WDC)model for precision agriculture.The proposed CVDL-WDC technique intends to prop-erly discriminate the plants as well as weeds.The proposed CVDL-WDC technique involves two processes namely multiscale Faster RCNN based object detection and optimal extreme learning machine(ELM)based weed classification.The parameters of the ELM model are optimally adjusted by the use of farmland fertility optimization(FFO)algorithm.A comprehensive simulation analysis of the CVDL-WDC technique against benchmark dataset reported the enhanced out-comes over its recent approaches interms of several measures.
基金supported in part by the National Natural Science Foundation of China(Grant No.61971078)Chongqing Education Commission Science and Technology Major Project(No.KJZD-M202301901).
文摘While single-modal visible light images or infrared images provide limited information,infrared light captures significant thermal radiation data,whereas visible light excels in presenting detailed texture information.Com-bining images obtained from both modalities allows for leveraging their respective strengths and mitigating individual limitations,resulting in high-quality images with enhanced contrast and rich texture details.Such capabilities hold promising applications in advanced visual tasks including target detection,instance segmentation,military surveillance,pedestrian detection,among others.This paper introduces a novel approach,a dual-branch decomposition fusion network based on AutoEncoder(AE),which decomposes multi-modal features into intensity and texture information for enhanced fusion.Local contrast enhancement module(CEM)and texture detail enhancement module(DEM)are devised to process the decomposed images,followed by image fusion through the decoder.The proposed loss function ensures effective retention of key information from the source images of both modalities.Extensive comparisons and generalization experiments demonstrate the superior performance of our network in preserving pixel intensity distribution and retaining texture details.From the qualitative results,we can see the advantages of fusion details and local contrast.In the quantitative experiments,entropy(EN),mutual information(MI),structural similarity(SSIM)and other results have improved and exceeded the SOTA(State of the Art)model as a whole.