Flexible sensors based on MXene-polymer composites are highly prospective for next-generation wearable electronics used in human-machine interfaces.One of the motivating factors behind the progress of flexible sensors...Flexible sensors based on MXene-polymer composites are highly prospective for next-generation wearable electronics used in human-machine interfaces.One of the motivating factors behind the progress of flexible sensors is the steady arrival of new conductive materials.MXenes,a new family of 2D nanomaterials,have been draw-ing attention since the last decade due to their high electronic conduc-tivity,processability,mechanical robustness and chemical tunability.In this review,we encompass the fabrication of MXene-based polymeric nanocomposites,their structure-property relationship,and applications in the flexible sensor domain.Moreover,our discussion is not only lim-ited to sensor design,their mechanism,and various modes of sensing platform,but also their future perspective and market throughout the world.With our article,we intend to fortify the bond between flexible matrices and MXenes thus promoting the swift advancement of flexible MXene-sensors for wearable technologies.展开更多
Performance of carbon nanotube(CNT) and their attached metal oxides(manganese oxide(MnO) and cadmium dioxide(CdO2)) structures as anode electrodes in lithium-ion battery(LIB) and potassium-ion battery(KIB) are investi...Performance of carbon nanotube(CNT) and their attached metal oxides(manganese oxide(MnO) and cadmium dioxide(CdO2)) structures as anode electrodes in lithium-ion battery(LIB) and potassium-ion battery(KIB) are investigated. The Gibbs free energy of adsorption of Li and K atoms/ions on surfaces of CNT(8, 0), CNT(8, 0)-MnO and CNT(8, 0)-CdO2 are calculated. The cell voltages(Vcell) of Li and K atoms/ions adsorption on studied surfaces are examined. The Vcell of LIBs with metal-oxides attached to CNT(8, 0) as anode electrodes are higher than those KIBs. The adsorbed metal oxides(MnO and CdO2) on CNT(8, 0) increased the charges, electronic conductivity and Vcell of LIB and KIB, efficiently. The CNT(8, 0)-CdO2 as anode electrodes in LIB and KIB is proposed.展开更多
基金The authors would like to acknowledge the support from the Natural Sciences and Engineering Research Council of Canada in the form of Discovery Grants to ARR and SS(RGPIN-2019-07246 and RGPIN-2022-04988).A.Rosenkranz greatly acknowledges the financial support given by ANID-Chile within the project Fondecyt Regular 1220331 and Fondequip EQM190057.B.Wang gratefully acknowledges the financial support given by the Alexander von Humboldt Foundation.
文摘Flexible sensors based on MXene-polymer composites are highly prospective for next-generation wearable electronics used in human-machine interfaces.One of the motivating factors behind the progress of flexible sensors is the steady arrival of new conductive materials.MXenes,a new family of 2D nanomaterials,have been draw-ing attention since the last decade due to their high electronic conduc-tivity,processability,mechanical robustness and chemical tunability.In this review,we encompass the fabrication of MXene-based polymeric nanocomposites,their structure-property relationship,and applications in the flexible sensor domain.Moreover,our discussion is not only lim-ited to sensor design,their mechanism,and various modes of sensing platform,but also their future perspective and market throughout the world.With our article,we intend to fortify the bond between flexible matrices and MXenes thus promoting the swift advancement of flexible MXene-sensors for wearable technologies.
文摘Performance of carbon nanotube(CNT) and their attached metal oxides(manganese oxide(MnO) and cadmium dioxide(CdO2)) structures as anode electrodes in lithium-ion battery(LIB) and potassium-ion battery(KIB) are investigated. The Gibbs free energy of adsorption of Li and K atoms/ions on surfaces of CNT(8, 0), CNT(8, 0)-MnO and CNT(8, 0)-CdO2 are calculated. The cell voltages(Vcell) of Li and K atoms/ions adsorption on studied surfaces are examined. The Vcell of LIBs with metal-oxides attached to CNT(8, 0) as anode electrodes are higher than those KIBs. The adsorbed metal oxides(MnO and CdO2) on CNT(8, 0) increased the charges, electronic conductivity and Vcell of LIB and KIB, efficiently. The CNT(8, 0)-CdO2 as anode electrodes in LIB and KIB is proposed.