Warm deformation tests were performed using a kind of tubby heater. The microstructures and mechanical properties of an Fe-C-Mn-Si multiphase steel resulting from different warm deformation temperatures were investiga...Warm deformation tests were performed using a kind of tubby heater. The microstructures and mechanical properties of an Fe-C-Mn-Si multiphase steel resulting from different warm deformation temperatures were investiga- ted by using LOM (light optical microscopy), SEM and XRD. The results indicated that the microstructure contai- ning polygonal ferrite, granular bainite and a significant amount of the stable retained austenite can be obtained through hot deformation and subsequent austempering. Warm deformation temperature affects the mechanical prop- erties of the hot rolled TRIP steels. Ultimate tensile strength balance reached maximum (881 MPa) when the speci- men was deformed at 250 ~C, and the total elongation and strength-ductility reached maximum (38% and 28 614 MPa ~ ~, respectively) at deforming temperature of 100 ~C. Martensite could nucleate when austenite was deformed above M~, because mechanical driving force compensates the decrease of chemical driving force. The TRIP effect occurs in the Fe-C-Mn-Si multiphase steel at deforming temperature ranging from 15 to 350 ~C. The results of the effects of warm deformation on the mechanical properties of the Fe-C-Mn-Si multiphase steel can provide theoretical basis for the ap- plications and the warm working of the hot rolled TRIP sheet steels in industrial manufacturing.展开更多
基金Sponsored by National Natural Science Foundation of China (50334010)
文摘Warm deformation tests were performed using a kind of tubby heater. The microstructures and mechanical properties of an Fe-C-Mn-Si multiphase steel resulting from different warm deformation temperatures were investiga- ted by using LOM (light optical microscopy), SEM and XRD. The results indicated that the microstructure contai- ning polygonal ferrite, granular bainite and a significant amount of the stable retained austenite can be obtained through hot deformation and subsequent austempering. Warm deformation temperature affects the mechanical prop- erties of the hot rolled TRIP steels. Ultimate tensile strength balance reached maximum (881 MPa) when the speci- men was deformed at 250 ~C, and the total elongation and strength-ductility reached maximum (38% and 28 614 MPa ~ ~, respectively) at deforming temperature of 100 ~C. Martensite could nucleate when austenite was deformed above M~, because mechanical driving force compensates the decrease of chemical driving force. The TRIP effect occurs in the Fe-C-Mn-Si multiphase steel at deforming temperature ranging from 15 to 350 ~C. The results of the effects of warm deformation on the mechanical properties of the Fe-C-Mn-Si multiphase steel can provide theoretical basis for the ap- plications and the warm working of the hot rolled TRIP sheet steels in industrial manufacturing.