期刊文献+
共找到4,771篇文章
< 1 2 239 >
每页显示 20 50 100
Relationship between the unique microstructures and behaviors of high-entropy alloys 被引量:2
1
作者 Yaqi Wu Peter KLiaw +5 位作者 Ruixuan Li Weiran Zhang Guihong Geng Xuehui Yan Guiqun Liu Yong Zhang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第6期1350-1363,共14页
High-entropy alloys(HEAs),which were introduced as a pioneering concept in 2004,have captured the keen interest of nu-merous researchers.Entropy,in this context,can be perceived as representing disorder and randomness... High-entropy alloys(HEAs),which were introduced as a pioneering concept in 2004,have captured the keen interest of nu-merous researchers.Entropy,in this context,can be perceived as representing disorder and randomness.By contrast,elemental composi-tions within alloy systems occupy specific structural sites in space,a concept referred to as structure.In accordance with Shannon entropy,structure is analogous to information.Generally,the arrangement of atoms within a material,termed its structure,plays a pivotal role in dictating its properties.In addition to expanding the array of options for alloy composites,HEAs afford ample opportunities for diverse structural designs.The profound influence of distinct structural features on the exceptional behaviors of alloys is underscored by numer-ous examples.These features include remarkably high fracture strength with excellent ductility,antiballistic capability,exceptional radi-ation resistance,and corrosion resistance.In this paper,we delve into various unique material structures and properties while elucidating the intricate relationship between structure and performance. 展开更多
关键词 high-entropy alloys unique microstructure special properties alloy design
下载PDF
Challenges and Opportunities in Preserving Key Structural Features of 3D-Printed Metal/Covalent Organic Framework 被引量:1
2
作者 Ximeng Liu Dan Zhao John Wang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第8期362-381,共20页
Metal-organic framework(MOF)and covalent organic framework(COF)are a huge group of advanced porous materials exhibiting attractive and tunable microstructural features,such as large surface area,tunable pore size,and ... Metal-organic framework(MOF)and covalent organic framework(COF)are a huge group of advanced porous materials exhibiting attractive and tunable microstructural features,such as large surface area,tunable pore size,and functional surfaces,which have significant values in various application areas.The emerging 3D printing technology further provides MOF and COFs(M/COFs)with higher designability of their macrostructure and demonstrates large achievements in their performance by shaping them into advanced 3D monoliths.However,the currently available 3D printing M/COFs strategy faces a major challenge of severe destruction of M/COFs’microstructural features,both during and after 3D printing.It is envisioned that preserving the microstructure of M/COFs in the 3D-printed monolith will bring a great improvement to the related applications.In this overview,the 3D-printed M/COFs are categorized into M/COF-mixed monoliths and M/COF-covered monoliths.Their differences in the properties,applications,and current research states are discussed.The up-to-date advancements in paste/scaffold composition and printing/covering methods to preserve the superior M/COF microstructure during 3D printing are further discussed for the two types of 3D-printed M/COF.Throughout the analysis of the current states of 3D-printed M/COFs,the expected future research direction to achieve a highly preserved microstructure in the 3D monolith is proposed. 展开更多
关键词 Metal-organic frameworks Covalent organic frameworks 3D printing Microstructure MONOLITH
下载PDF
Interfacial Modification of NiO_(x)by Self-assembled Monolayer for Efficient and Stable Inverted Perovskite Solar Cells 被引量:1
3
作者 Xin Yu Yandong Wang +5 位作者 Liufei Li Shantao Zhang Shuang Gao Mao Liang Wen-Hua Zhang Shangfeng Yang 《Chinese Journal of Chemical Physics》 SCIE EI CAS CSCD 2024年第4期553-562,I0080-I0091,I0095,共23页
NiO_(x)as a hole transport material for inverted perovskite solar cells has received great attention owing to its high transparency,low fabrication temperature,and superior stability.However,the mismatched energy leve... NiO_(x)as a hole transport material for inverted perovskite solar cells has received great attention owing to its high transparency,low fabrication temperature,and superior stability.However,the mismatched energy levels and possible redox reactions at the NiO_(x)/perovskite interface severely limit the performance of NiO_(x) based inverted perovskite solar cells.Herein,we introduce a p-type self-assembled monolayer between NiO_(x)and perovskite layers to modify the interface and block the undesirable redox reaction between perovskite and NiO_(x)The selfassembled monolayer molecules all contain phosphoric acid function groups,which can be anchored onto the NiOr surface and passivate the surface defect.Moreover,the introduction of self-assembled monolayers can regulate the energy level structure of NiO_(x),reduce the interfacial band energy offset,and hence promote the hole transport from perovskite to NiO_(x)layer.Consequently,the device performance is significantly enhanced in terms of both power conversion efficiency and stability. 展开更多
关键词 Perovskite solar cell NiO_(x) Self-assembled monolayer Interfacial engineering Stability
下载PDF
Targeted regeneration and upcycling of spent graphite by defect‐driven tin nucleation 被引量:1
4
作者 Zhiheng Cheng Zhiling Luo +7 位作者 Hao Zhang Wuxing Zhang Wang Gao Yang Zhang Long Qie Yonggang Yao Yunhui Huang Kun Kelvin Fu 《Carbon Energy》 SCIE EI CAS CSCD 2024年第4期91-103,共13页
The recycling of spent batteries has become increasingly important owing to their wide applications,abundant raw material supply,and sustainable development.Compared with the degraded cathode,spent anode graphite ofte... The recycling of spent batteries has become increasingly important owing to their wide applications,abundant raw material supply,and sustainable development.Compared with the degraded cathode,spent anode graphite often has a relatively intact structure with few defects after long cycling.Yet,most spent graphite is simply burned or discarded due to its limited value and inferior performance on using conventional recycling methods that are complex,have low efficiency,and fail in performance restoration.Herein,we propose a fast,efficient,and“intelligent”strategy to regenerate and upcycle spent graphite based on defect‐driven targeted remediation.Using Sn as a nanoscale healant,we used rapid heating(~50 ms)to enable dynamic Sn droplets to automatically nucleate around the surface defects on the graphite upon cooling owing to strong binding to the defects(~5.84 eV/atom),thus simultaneously achieving Sn dispersion and graphite remediation.As a result,the regenerated graphite showed enhanced capacity and cycle stability(458.9 mAh g^(−1) at 0.2 A g^(−1) after 100 cycles),superior to those of commercial graphite.Benefiting from the self‐adaption of Sn dispersion,spent graphite with different degrees of defects can be regenerated to similar structures and performance.EverBatt analysis indicates that targeted regeneration and upcycling have significantly lower energy consumption(~99%reduction)and near‐zero CO_(2) emission,and yield much higher profit than hydrometallurgy,which opens a new avenue for direct upcycling of spend graphite in an efficient,green,and profitable manner for sustainable battery manufacture. 展开更多
关键词 battery recycling spent graphite targeted regeneration upcycling graphite
下载PDF
Impact of microplastics and nanoplastics on liver health:Current understanding and future research directions 被引量:1
5
作者 Chun-Cheng Chiang Hsuan Yeh +2 位作者 Ruei-Feng Shiu Wei-Chun Chin Tzung-Hai Yen 《World Journal of Gastroenterology》 SCIE CAS 2024年第9期1011-1017,共7页
With continuous population and economic growth in the 21st century,plastic pollution is a major global issue.However,the health concern of microplastics/nanoplastics(MPs/NPs)decomposed from plastic wastes has drawn pu... With continuous population and economic growth in the 21st century,plastic pollution is a major global issue.However,the health concern of microplastics/nanoplastics(MPs/NPs)decomposed from plastic wastes has drawn public attention only in the recent decade.This article summarizes recent works dedicated to understanding the impact of MPs/NPs on the liver-the largest digestive organ,which is one of the primary routes that MPs/NPs enter human bodies.The interrelated mechanisms including oxidative stress,hepatocyte energy re-distribution,cell death and autophagy,as well as immune responses and inflammation,were also featured.In addition,the disturbance of microbiome and gut-liver axis,and the association with clinical diseases such as metabolic dysfunction-associated fatty liver disease,steatohepatitis,liver fibrosis,and cirrhosis were briefly discussed.Finally,we discussed potential directions in regard to this trending topic,highlighted current challenges in research,and proposed possible solutions. 展开更多
关键词 Microplastics Nanoplastics LIVER Reactive oxidative species Cell death Autophagy Innate immunity Metabolic dysfunction-associated fatty liver disease Gut-liver axis
下载PDF
Effect of substrate temperature and oxygen plasma treatment on the properties of magnetron-sputtered CdS for solar cell applications
6
作者 Runxuan Zang Haolin Wang +9 位作者 Xiaoqi Peng Ke Li Yuehao Gu Yizhe Dong Zhihao Yan Zhiyuan Cai Huihui Gao Shuwei Sheng Rongfeng Tang Tao Chen 《中国科学技术大学学报》 CAS CSCD 北大核心 2024年第6期22-33,I0010,共13页
Cadmium sulfide(CdS)is an n-type semiconductor with excellent electrical conductivity that is widely used as an electron transport material(ETM)in solar cells.At present,numerous methods for preparing CdS thin films h... Cadmium sulfide(CdS)is an n-type semiconductor with excellent electrical conductivity that is widely used as an electron transport material(ETM)in solar cells.At present,numerous methods for preparing CdS thin films have emerged,among which magnetron sputtering(MS)is one of the most commonly used vacuum techniques.For this type of technique,the substrate temperature is one of the key deposition parameters that affects the interfacial properties between the target film and substrate,determining the specific growth habits of the films.Herein,the effect of substrate temperature on the microstructure and electrical properties of magnetron-sputtered CdS(MS-CdS)films was studied and applied for the first time in hydrothermally deposited antimony selenosulfide(Sb_(2)(S,Se)_(3))solar cells.Adjusting the substrate temperature not only results in the design of the flat and dense film with enhanced crystallinity but also leads to the formation of an energy level arrangement with a Sb_(2)(S,Se)_(3)layer that is more favorable for electron transfer.In addition,we developed an oxygen plasma treatment for CdS,reducing the parasitic absorption of the device and resulting in an increase in the short-circuit current density of the solar cell.This study demonstrates the feasibility of MS-CdS in the fabrication of hydrothermal Sb_(2)(S,Se)_(3)solar cells and provides interface optimization strategies to improve device performance. 展开更多
关键词 magnetron sputtering CDS substrate heating plasma treatment Sb_(2)(S Se)_(3) thin film solar cell
下载PDF
Pioneering the direct large-scale laser printing of flexible“graphenic silicon”self-standing thin films as ultrahigh-performance lithium-ion battery anodes
7
作者 Avinash Kothuru Adam Cohen +2 位作者 Gil Daffan Yonatan Juhl Fernando Patolsky 《Carbon Energy》 SCIE EI CAS CSCD 2024年第7期26-40,共15页
Recent technological advancements,such as portable electronics and electric vehicles,have created a pressing need for more efficient energy storage solutions.Lithium-ion batteries(LIBs)have been the preferred choice f... Recent technological advancements,such as portable electronics and electric vehicles,have created a pressing need for more efficient energy storage solutions.Lithium-ion batteries(LIBs)have been the preferred choice for these applications,with graphite being the standard anode material due to its stability.However,graphite falls short of meeting the growing demand for higher energy density,possessing a theoretical capacity that lags behind.To address this,researchers are actively seeking alternative materials to replace graphite in commercial batteries.One promising avenue involves lithiumalloying materials like silicon and phosphorus,which offer high theoretical capacities.Carbon-silicon composites have emerged as a viable option,showing improved capacity and performance over traditional graphite or pure silicon anodes.Yet,the existing methods for synthesizing these composites remain complex,energy-intensive,and costly,preventing widespread adoption.A groundbreaking approach is presented here:the use of a laser writing strategy to rapidly transform common organic carbon precursors and silicon blends into efficient“graphenic silicon”composite thin films.These films exhibit exceptional structural and energy storage properties.The resulting three-dimensional porous composite anodes showcase impressive attributes,including ultrahigh silicon content,remarkable cyclic stability(over 4500 cycles with∼40%retention),rapid charging rates(up to 10 A g^(-1)),substantial areal capacity(>5.1 mAh cm^(-2)),and excellent gravimetric capacity(>2400 mAh g^(-1) at 0.2 A g^(-1)).This strategy marks a significant step toward the scalable production of high-performance LIB materials.Leveraging widely available,cost-effective precursors,the laser-printed“graphenic silicon”composites demonstrate unparalleled performance,potentially streamlining anode production while maintaining exceptional capabilities.This innovation not only paves the way for advanced LIBs but also sets a precedent for transforming various materials into high-performing electrodes,promising reduced complexity and cost in battery production. 展开更多
关键词 4D printing energy storage fast-charging laser-induced graphene LITHIUM-ION silicon carbon composite anodes
下载PDF
Superplasticity of fine-grained Mg-10Li alloy prepared by severe plastic deformation and understanding its deformation mechanisms
8
作者 H.T.Jeong S.W.Lee W.J.Kim 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第1期316-331,共16页
The superplastic behavior and associated deformation mechanisms of a fine-grained Mg-10.1 Li-0.8Al-0.6Zn alloy(LAZ1011)with a grain size of 3.2μm,primarily composed of the BCCβphase and a small amount of the HCPαph... The superplastic behavior and associated deformation mechanisms of a fine-grained Mg-10.1 Li-0.8Al-0.6Zn alloy(LAZ1011)with a grain size of 3.2μm,primarily composed of the BCCβphase and a small amount of the HCPαphase,were examined in a temperature range of 473 K to 623 K.The microstructural refinement of this alloy was achieved by employing high-ratio differential speed rolling.The best superplasticity was achieved at 523 K and at strain rates of 10^(-4)-5×10^(-4)s^(-1),where tensile elongations of 550±600%were obtained.During the heating and holding stage of the tensile samples prior to tensile loading,a significant increase in grain size was observed at temperatures above 573 K.Therefore,it was important to consider this effect when analyzing and understanding the superplastic deformation behavior and mechanisms.In the investigated strain rate range,the superplastic flow at low strain rates was governed by lattice diffusion-controlled grain boundary sliding,while at high strain rates,lattice diffusion-controlled dislocation climb creep was the rate-controlling deformation mechanism.It was concluded that solute drag creep is unlikely to occur.During the late stages of deformation at 523 K,it was observed that grain boundary sliding led to the agglomeration of theαphase,resulting in significant strain hardening.Deformation mechanism maps were constructed forβ-Mg-Li alloys in the form of 2D and 3D formats as a function of strain rate,stress,temperature,and grain size,using the constitutive equations for various deformation mechanisms derived based on the data of the current tests. 展开更多
关键词 Magnesium-lithium alloy SUPERPLASTICITY Severe plastic deformation Grain size Grain growth
下载PDF
Emerging two-dimensional Mo-based materials for rechargeable metal-ion batteries:Advances and perspectives
9
作者 Qingqing Ruan Yuehua Qian +2 位作者 Mengda Xue Lingyun Chen Qichun Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期487-518,I0012,共33页
With the rapid development of rechargeable metal-ion batteries(MIBs)with safety,stability and high energy density,significant efforts have been devoted to exploring high-performance electrode materials.In recent years... With the rapid development of rechargeable metal-ion batteries(MIBs)with safety,stability and high energy density,significant efforts have been devoted to exploring high-performance electrode materials.In recent years,two-dimensional(2D)molybdenum-based(Mo-based)materials have drawn considerable attention due to their exceptional characteristics,including low cost,unique crystal structure,high theoretical capacity and controllable chemical compositions.However,like other transition metal compounds,Mo-based materials are facing thorny challenges to overcome,such as slow electron/ion transfer kinetics and substantial volume changes during the charge and discharge processes.In this review,we summarize the recent progress in developing emerging 2D Mo-based electrode materials for MIBs,encompassing oxides,sulfides,selenides,carbides.After introducing the crystal structure and common synthesis methods,this review sheds light on the charge storage mechanism of several 2D Mo-based materials by various advanced characterization techniques.The latest achievements in utilizing 2D Mo-based materials as electrode materials for various MIBs(including lithium-ion batteries(LIBs),sodium-ion batteries(SIBs)and zinc-ion batteries(ZIBs))are discussed in detail.Afterwards,the modulation strategies for enhancing the electrochemical performance of 2D Mo-based materials are highlighted,focusing on heteroatom doping,vacancies creation,composite coupling engineering and nanostructure design.Finally,we present the existing challenges and future research directions for 2D Mo-based materials to realize high-performance energy storage systems. 展开更多
关键词 Molybdenum-based materials Two-dimensional materials Lithium-ion batteries Sodium-ion batteries Zinc-ion batteries
下载PDF
Oxidation behavior of FeV_(2)O_(4)and FeCr_(2)O_(4)particles in the air:Nonisothermal kinetic and reaction mechanism
10
作者 Junyi Xiang Xi Lu +6 位作者 Luwei Bai Hongru Rao Sheng Liu Qingyun Huang Shengqin Zhang Guishang Pei Xuewei Lü 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第8期1839-1848,共10页
High-temperature oxidation behavior of ferrovanadium(FeV_(2)O_(4))and ferrochrome(FeCr_(2)O_(4))spinels is crucial for the application of spinel as an energy material,as well as for the clean usage of high-chromium va... High-temperature oxidation behavior of ferrovanadium(FeV_(2)O_(4))and ferrochrome(FeCr_(2)O_(4))spinels is crucial for the application of spinel as an energy material,as well as for the clean usage of high-chromium vanadium slag.Herein,the nonisothermal oxidation behavior of FeV_(2)O_(4)and FeCr_(2)O_(4)prepared by high-temperature solid-state reaction was examined by thermogravimetry and X-ray diffraction(XRD)at heating rates of 5,10,and 15 K/min.The apparent activation energy was determined by the Kissinger-Akahira-Sunose(KAS)method,whereas the mechanism function was elucidated by the Malek method.Moreover,in-situ XRD was conducted to deduce the phase transformation of the oxidation mechanism for FeV_(2)O_(4)and FeCr_(2)O_(4).The results reveal a gradual increase in the overall apparent activation energies for FeV_(2)O_(4)and FeCr_(2)O_(4)during oxidation.Four stages of the oxidation process are observed based on the oxidation conversion rate of each compound.The oxidation mechanisms of FeV_(2)O_(4)and FeCr_(2)O_(4)are complex and have distinct mechanisms.In particular,the chemical reaction controls the entire oxidation process for FeV_(2)O_(4),whereas that for FeCr_(2)O_(4)transitions from a three-dimensional diffusion model to a chemical reaction model.According to the in-situ XRD results,numerous intermediate products are observed during the oxidation process of both compounds,eventually resulting in the final products FeVO_(4)and V2O_(5)for FeV_(2)O_(4)and Fe_(2)O_(3)and Cr_(2)O_(3)for FeCr_(2)O_(4),respectively. 展开更多
关键词 FeV_(2)O_(4) FeCr_(2)O_(4) oxidation nonisothermal kinetics mechanism
下载PDF
Ballistic performance of titanium-based layered composites made using blended elemental powder metallurgy and hot isostatic pressing
11
作者 Pavlo Markovsky Jacek Janiszewski +5 位作者 Dmytro Savvakin Oleksandr Stasyuk Bartosz Fikus Victor Samarov Vianey Ellison Sergey V.Prikhodko 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第9期1-14,共14页
Metal matrix composites tiles based on Ti-6Al-4V(Ti64)alloy,reinforced with 10,20,and 40(vol%)of either TiC or TiB particles were made using press-and-sinter blended elemental powder metallurgy(BEPM)and then bonded to... Metal matrix composites tiles based on Ti-6Al-4V(Ti64)alloy,reinforced with 10,20,and 40(vol%)of either TiC or TiB particles were made using press-and-sinter blended elemental powder metallurgy(BEPM)and then bonded together into 3-layer laminated plates using hot isostatic pressing(HIP).The laminates were ballistically tested and demonstrated superior performance.The microstructure and properties of the laminates were analyzed to determine the effect of the BEPM and HIP processing on the ballistic properties of the layered plates.The effect of porosity in sintered composites on further diffusion bonding of the plates during HIP is analyzed to understand the bonding features at the interfaces between different adjacent layers in the laminate.Exceptional ballistic performance of fabricated structures was explained by a significant reduction in the residual porosity of the BEPM products by their additional processing using HIP,which provides an unprecedented increase in the hardness of the layered composites.It is argued that the combination of the used two technologies,BEPM and HIP is principally complimentary for the materials in question with the abilities to solve the essential problems of each used individually. 展开更多
关键词 Metal matrix composites Powder metallurgy Titanium hydride powder Master alloy Titanium carbide Titanium boride Hot isostatic pressing Ballistic tests
下载PDF
Mechanical and corrosion properties of full liquid phase sintered WE43 magnesium alloy specimens fabricated via binder jetting additive manufacturing
12
作者 Dae Hyun Cho David Dean Alan A.Luo 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第7期2711-2724,共14页
This study investigates full liquid phase sintering as a process of fabrication parts from WE43(Mg-4wt.%Y-3wt.%RE-0.7wt.%Zr)alloy using binder jetting additive manufacturing(BJAM).This fabrication process is being dev... This study investigates full liquid phase sintering as a process of fabrication parts from WE43(Mg-4wt.%Y-3wt.%RE-0.7wt.%Zr)alloy using binder jetting additive manufacturing(BJAM).This fabrication process is being developed for use in producing structural or biomedical devices.Specifically,this study focused on achieving a near-dense microstructure with WE43 Mg alloy while substantially reducing the duration of sintering post-processing after BJAM part rendering.The optimal process resulted in microstructure with 2.5%porosity and significantly reduced sintering time.The improved sintering can be explained by the presence of Y_(2)O_(3)and Nd_(2)O_(3)oxide layers,which form spontaneously on the surface of WE43 powder used in BJAM.These layers appear to be crucial in preventing shape distortion of the resulting samples and in enabling the development of sintering necks,particularly under sintering conditions exceeding the liquidus temperature of WE43 alloy.Sintered WE43 specimens rendered by BJAM achieved significant improvement in both corrosion resistance and mechanical properties through reduced porosity levels related to the sintering time. 展开更多
关键词 Magnesium alloy Liquid phase sintering Additive manufacturing Binder jetting process BIODEGRADATION
下载PDF
Quantification of grain boundary effects on the geometrically necessary dislocation density evolution and strain hardening of polycrystalline Mg-4Al using in situ tensile testing in scanning electron microscope and HR-EBSD
13
作者 Eunji Song Mohsen Taheri Andani Amit Misra 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第5期1815-1829,共15页
In situ tensile testing in a scanning electron microscope(SEM)in conjunction with high-resolution electron backscatter diffraction(HR-EBSD)under load was used to characterize the evolution of geometrically necessary d... In situ tensile testing in a scanning electron microscope(SEM)in conjunction with high-resolution electron backscatter diffraction(HR-EBSD)under load was used to characterize the evolution of geometrically necessary dislocation(GND)densities at individual grain boundaries as a function of applied strain in a polycrystalline Mg-4Al alloy.The increase in GND density was investigated at plastic strains of 0%,0.6%,2.2%,3.3% from the area including 76 grains and correlated with(i)geometric compatibility between slip systems across grain boundaries,and(ii)plastic incompatibility.We develop expressions for the grain boundary GND density evolution as a function of plastic strain and plastic incompatibility,from which uniaxial tensile stress-strain response of polycrystalline Mg-4Al are computed and compared with experimental measurement.The findings in this study contribute to understanding the mechanisms governing the strain hardening response of single-phase polycrystalline alloys and more reliable prediction of mechanical behaviors in diverse microstructures. 展开更多
关键词 Mg-Al alloys Grain boundaries Geometrically necessary dislocations Strain gradient plasticity HR-EBSD
下载PDF
Effect of forging on the microstructure and texture of a high Nb containing γ-TiAl alloy
14
作者 TAO Hui LI Hui-zhong +4 位作者 WANG Li ZHOU Rui CHE Yi-xuan CHEN Yong-hui LIANG Xiao-peng 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第6期1763-1773,共11页
The effect of forging on the microstructure and texture evolution of a high Nb containing Ti-45Al-7Nb-0.3W(at.%)alloy was investigated by X-ray diffractometer(XRD),scanning electron microscopy(SEM),and transmission el... The effect of forging on the microstructure and texture evolution of a high Nb containing Ti-45Al-7Nb-0.3W(at.%)alloy was investigated by X-ray diffractometer(XRD),scanning electron microscopy(SEM),and transmission electron microscopy(TEM).The results show that the as-cast alloy is mainly composed of α_(2)/γ lamellar colonies with a mean size of 70μm,but the hot-forged pancake displays a near duplex microstructure(DP).Kinking and bending of lamellar colonies,deformation twinning and dynamic recrystallization(DRX)occur during hot forging.Meanwhile,dense dislocations in theβphase after forging suggest that the high-temperature β phase with a disordered structure is favorable for improving the hot-workability of the alloy.Unlike the common TiAl casting texture,the solidification process of the investigated as-cast alloy with high Nb content is completely via the β phase region,resulting in the formation of a<110>γ fiber texture where the<110>γ aligns parallel to the heat-flow direction.In comparison,the relatively strong<001>and weak<302>texture components in the as-forged alloy are attributed to the deformation twinning.After annealing,static recrystallization occurs at the twin boundary and intersections,which weakens the deformation texture. 展开更多
关键词 high Nb containingγ-TiAl alloy FORGING microstructure TEXTURE βphase
下载PDF
Design and characterization of biodegradable Mg-Zn-Ag metallic glasses
15
作者 Jian WANG Chen WANG +1 位作者 Wei-feng RAO In-ho JUNG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2024年第9期2814-2827,共14页
In order to develop the Mg-Zn-Ag metallic glasses(MGs)for biodegradable implant applications,the glass formation ability(GFA)and biocompatibility of Mg-Zn-Ag alloys were investigated using a combination of the calcula... In order to develop the Mg-Zn-Ag metallic glasses(MGs)for biodegradable implant applications,the glass formation ability(GFA)and biocompatibility of Mg-Zn-Ag alloys were investigated using a combination of the calculation of phase diagrams(CALPHAD)and experimental measurements.High GFA potentiality of two alloy series,specifically Mg_(96-x)Zn_xAg_(4)and Mg_(94-x)Zn_xAg_6(x=17,20,23,26,29,32,35),was predicted theoretically and then substantiated through experimental testing.X-ray diffraction(XRD)and differential scanning calorimetry(DSC)techniques were used to evaluate the crystallinity,GFA,and crystallization characteristics of these alloys.The results showed that compositions between Mg_(73)Zn_(23)Ag_(4)and Mg_(64)Zn_(32)Ag_(4)for Mg_(96-x)Zn_xAg_4,Mg_(66)Zn_(28)Ag_(6)and Mg_(63)Zn_(31)Ag_(6for)Mg_(94-x)Zn_xAg_(6)displayed a superior GFA.Notably,the GFA of the Mg_(96-x)Zn_xAg_(4)series was better than that of the Mg_(94-x)Zn_xAg_(6)series.Furthermore,the Mg_(70)Zn_(26)Ag_4,Mg_(74)Zn_(20)Ag_6,and Mg_(71)Zn_(23)Ag_(6)alloys showed acceptable corrosion rates,good cytocompatibility,and positive effects on cell proliferation.These characteristics make them suitable for applications in medical settings,potentially materials as biodegradable implants. 展开更多
关键词 glass forming ability calculation phase diagram(CALPHAD) Mg−Zn−Ag metallic glasses CYTOCOMPATIBILITY
下载PDF
Fine-tuning electronic structure of N-doped graphitic carbon-supported Co-and Fe-incorporated Mo_(2)C to achieve ultrahigh electrochemical water oxidation activity
16
作者 Md.Selim Arif Sher Shah Hyeonjung Jung +3 位作者 Vinod K.Paidi Kug-Seung Lee Jeong Woo Han Jong Hyeok Park 《Carbon Energy》 SCIE EI CAS CSCD 2024年第7期134-149,共16页
Mo_(2)C is an excellent electrocatalyst for hydrogen evolution reaction(HER).However,Mo_(2)C is a poor electrocatalyst for oxygen evolution reaction(OER).Herein,two different elements,namely Co and Fe,are incorporated... Mo_(2)C is an excellent electrocatalyst for hydrogen evolution reaction(HER).However,Mo_(2)C is a poor electrocatalyst for oxygen evolution reaction(OER).Herein,two different elements,namely Co and Fe,are incorporated in Mo_(2)C that,therefore,has a finely tuned electronic structure,which is not achievable by incorporation of any one of the metals.Consequently,the resulting electrocatalyst Co_(0.8)Fe_(0.2)-Mo_(2)C-80 displayed excellent OER catalytic performance,which is evidenced by a low overpotential of 214.0(and 246.5)mV to attain a current density of 10(and 50)mA cm^(-2),an ultralow Tafel slope of 38.4 mV dec^(-1),and longterm stability in alkaline medium.Theoretical data demonstrates that Co_(0.8)Fe_(0.2)-Mo_(2)C-80 requires the lowest overpotential(1.00 V)for OER and Co centers to be the active sites.The ultrahigh catalytic performance of the electrocatalyst is attributed to the excellent intrinsic catalytic activity due to high Brunauer-Emmett-Teller specific surface area,large electrochemically active surface area,small Tafel slope,and low chargetransfer resistance. 展开更多
关键词 fine-tuning electronic structures heteronanostructures Mo_(2)C multimetal(Co/Fe) oxygen evolution reaction
下载PDF
Synergistically Improved Mechanical Properties and Thermal Conductivity of Hypoeutectic AlSiNiFeMg Alloy Prepared by Ultrasonic-assisted Casting
17
作者 ZHANG Wenda YUAN Xuan +4 位作者 ZHOU Yuli ZHONG Gu BAI Peikang WANG Hongfu LIU Jun 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第6期1565-1568,共4页
We employed a melt ultrasonic treatment near the liquidus to prepare a high-thermal-conductivity Al-4Si-2Ni-0.8Fe-0.4Mg alloy.The influences of various ultrasonic powers on its microstructure,mechanical properties,and... We employed a melt ultrasonic treatment near the liquidus to prepare a high-thermal-conductivity Al-4Si-2Ni-0.8Fe-0.4Mg alloy.The influences of various ultrasonic powers on its microstructure,mechanical properties,and thermal conductivity were investigated.It is shown that near-liquidus ultrasonication significantly refines the alloy grains and eutectic structure,synergistically improving the alloy’s mechanical properties and thermal conductivity.Specifically,the grain size decreased by 84.5%from 941.4 to 186.2μm.Increasing the ultrasonic power improved the thermal conductivity of the alloy slightly and significantly enhanced its mechanical properties.At an ultrasonic power of 2100 W,the tensile strength,yield strength,elongation rate,and thermal conductivity were 216 MPa,142 MPa,6.3%,and 169 W/(m·k),respectively. 展开更多
关键词 Al-Si alloy mechanical property thermal conductivity ultrasonic treatment SOLIDIFICATION microstructure
下载PDF
Towards high-performance and robust anion exchange membranes(AEMs)for water electrolysis:Super-acid-catalyzed synthesis of AEMs
18
作者 Geun Woong Ryoo Sun Hwa Park +3 位作者 Ki Chang Kwon Jong Hun Kang Ho Won Jang Min Sang Kwon 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期478-510,I0012,共34页
The increasing demand for hydrogen energy to address environmental issues and achieve carbon neutrality has elevated interest in green hydrogen production,which does not rely on fossil fuels.Among various hydrogen pro... The increasing demand for hydrogen energy to address environmental issues and achieve carbon neutrality has elevated interest in green hydrogen production,which does not rely on fossil fuels.Among various hydrogen production technologies,anion exchange membrane water electrolyzer(AEMWE)has emerged as a next-generation technology known for its high hydrogen production efficiency and its ability to use non-metal catalysts.However,this technology faces significant challenges,particularly in terms of the membrane durability and low ionic conductivity.To address these challenges,research efforts have focused on developing membranes with a new backbone structure and anion exchange groups to enhance durability and ionic conductivity.Notably,the super-acid-catalyzed condensation(SACC)synthesis method stands out due to its user convenience,the ability to create high molecular weight(MW)polymers,and the use of oxygen-tolerant organic catalysts.Although the synthesis of anion exchange membranes(AEMs)using the SACC method began in 2015,and despite growing interest in this synthesis approach,there remains a scarcity of review papers focusing on AEMs synthesized using the SACC method.The review covers the basics of SACC synthesis,presents various polymers synthesized using this method,and summarizes the development of these polymers,particularly their building blocks including aryl,ketone,and anion exchange groups.We systematically describe the effects of changes in the molecular structure of each polymer component,conducted by various research groups,on the mechanical properties,conductivity,and operational stability of the membrane.This review will provide insights into the development of AEMs with superior performance and operational stability suitable for water electrolysis applications. 展开更多
关键词 Green hydrogen production Water electrolysis Anion exchange membrane water electrolyzer(AEMWE) Anion exchange membranes(AEMs) Super-acid-catalyzed condensation(SACC)
下载PDF
Unraveling the Harmonious Coexistence of Ruthenium States on a Self-Standing Electrode for Enhanced Hydrogen Evolution Reaction
19
作者 Joonhee Ma Jin Hyuk Cho +6 位作者 Chaehyeon Lee Moon Sung Kang Sungkyun Choi Ho Won Jang Sang Hyun Ahn Seoin Back Soo Young Kim 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第6期303-311,共9页
The development of cost-effective,highly efficient,and durable electrocatalysts has been a paramount pursuit for advancing the hydrogen evolution reaction(HER).Herein,a simplified synthesis protocol was designed to ac... The development of cost-effective,highly efficient,and durable electrocatalysts has been a paramount pursuit for advancing the hydrogen evolution reaction(HER).Herein,a simplified synthesis protocol was designed to achieve a self-standing electrode,composed of activated carbon paper embedded with Ru single-atom catalysts and Ru nanoclusters(ACP/Ru_(SAC+C))via acid activation,immersion,and high-temperature pyrolysis.Ab initio molecular dynamics(AIMD)calculations are employed to gain a more profound understanding of the impact of acid activation on carbon paper.Furthermore,the coexistence states of the Ru atoms are confirmed via aberration-corrected scanning transmission electron microscopy(AC-STEM),X-ray photoelectron spectroscopy(XPS),and X-ray absorption spectroscopy(XAS).Experimental measurements and theoretical calculations reveal that introducing a Ru single-atom site adjacent to the Ru nanoclusters induces a synergistic effect,tuning the electronic structure and thereby significantly enhancing their catalytic performance.Notably,the ACP/Ru_(SAC+C)exhibits a remarkable turnover frequency(TOF)of 18 s^(−1)and an exceptional mass activity(MA)of 2.2 A mg^(−1),surpassing the performance of conventional Pt electrodes.The self-standing electrode,featuring harmoniously coexisting Ru states,stands out as a prospective choice for advancing HER catalysts,enhancing energy efficiency,productivity,and selectivity. 展开更多
关键词 ELECTROCATALYSIS electronic coupling effect hydrogen evolution reaction selfstanding electrode
下载PDF
Coupling of Adhesion and Anti‑Freezing Properties in Hydrogel Electrolytes for Low‑Temperature Aqueous‑Based Hybrid Capacitors
20
作者 Jingya Nan Yue Sun +9 位作者 Fusheng Yang Yijing Zhang Yuxi Li Zihao Wang Chuchu Wang Dingkun Wang Fuxiang Chu Chunpeng Wang Tianyu Zhu Jianchun Jiang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第2期15-31,共17页
Solid-state zinc-ion capacitors are emerging as promising candidates for large-scale energy storage owing to improved safety,mechanical and thermal stability and easy-to-direct stacking.Hydrogel electrolytes are appea... Solid-state zinc-ion capacitors are emerging as promising candidates for large-scale energy storage owing to improved safety,mechanical and thermal stability and easy-to-direct stacking.Hydrogel electrolytes are appealing solid-state electrolytes because of eco-friendliness,high conductivity and intrinsic flexibility.However,the electrolyte/electrode interfacial contact and anti-freezing properties of current hydrogel electrolytes are still challenging for practical applications of zinc-ion capacitors.Here,we report a class of hydrogel electrolytes that couple high interfacial adhesion and anti-freezing performance.The synergy of tough hydrogel matrix and chemical anchorage enables a well-adhered interface between hydrogel electrolyte and electrode.Meanwhile,the cooperative solvation of ZnCl2 and LiCl hybrid salts renders the hydrogel electrolyte high ionic conductivity and mechanical elasticity simultaneously at low temperatures.More significantly,the Zn||carbon nanotubes hybrid capacitor based on this hydrogel electrolyte exhibits low-temperature capacitive performance,delivering high-energy density of 39 Wh kg^(-1)at-60°C with capacity retention of 98.7%over 10,000 cycles.With the benefits of the well-adhered electrolyte/electrode interface and the anti-freezing hydrogel electrolyte,the Zn/Li hybrid capacitor is able to accommodate dynamic deformations and function well under 1000 tension cycles even at-60°C.This work provides a powerful strategy for enabling stable operation of low-temperature zinc-ion capacitors. 展开更多
关键词 Interfacial adhesion ANTI-FREEZING Hydrogel electrolytes Low-temperature hybrid capacitors Dynamic deformati
下载PDF
上一页 1 2 239 下一页 到第
使用帮助 返回顶部