期刊文献+
共找到578篇文章
< 1 2 29 >
每页显示 20 50 100
Unraveling the role of dual Ti/Mg metals on the ignition and combustion behavior of HTPB-boron-based fuel 被引量:1
1
作者 Arijit Debnath Yash Pal +1 位作者 Sri Nithya Mahottamananda Djalal Trache 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期134-143,共10页
Metal additives play an essential role in explosive and propellant formulations. Boron(B) is widely used in propellant applications owing to its high energetic content. The addition of B to explosives and propellants ... Metal additives play an essential role in explosive and propellant formulations. Boron(B) is widely used in propellant applications owing to its high energetic content. The addition of B to explosives and propellants increases their energy density, making them more efficient and powerful. Nevertheless, B forms oxide layers on its surface during combustion, slowing down the combustion rate and reducing rocket motor efficiency. To overcome this issue, other metal additives such as aluminum(Al), magnesium(Mg),and titanium(Ti) are revealed to be effective in boosting the combustion rate of propellants. These additives may improve the combustion rate and therefore enhance the rocket motor’s performance. The present study focused on preparing and investigating the ignition and combustion behavior of pure hydroxyl-terminated polybutadiene(HTPB)-B fuel supplemented with nano-titanium and nanomagnesium. The burn rates of HTPB-B fuel samples were evaluated on the opposed flow burner(OFB)under a gaseous oxygen oxidizer, for which the mass flux ranges from 22 kg/(m^(2)·s) to 86 kg/(m^(2)·s). The addition of Ti and Mg exhibited higher regression rates, which were attributed to the improved oxidation reaction of B due to the synergetic metal combustion effect. The possible combustion/oxidation reaction mechanism of B-Mg and B-Ti by heating the fuel samples at 900℃ and 1100℃ was also examined in a Nabertherm burnout furnace under an oxygen atmosphere. The post-combustion products were collected and further subjected to X-ray diffraction(XRD) and field emission scanning electron microscopy(FE-SEM) analyses to inspect the combustion behavior of B-Ti and B-Mg. It has been observed that the B oxide layer at the interface between B-Ti(B-Mg) is removed at lower temperatures, hence facilitating oxygen transfer from the surroundings to the core B. Additionally, Ti and Mg decreased the ignition delay time of B, which improved its combustion performance. 展开更多
关键词 BORON B_(2)O_(3) Opposed flow burner Combustion MAGNESIUM
下载PDF
Research on the Construction of Aerospace Equipment Maintenance Support Chain Models
2
作者 Hongbin Song Xuegang Wang +2 位作者 Lihua Fang Qiuchen Gu Wei Cheng 《World Journal of Engineering and Technology》 2023年第4期698-715,共18页
The current space launch missions are intense, and the utilization of equipment is frequent, demanding increasingly higher responsiveness and capability in maintenance and support. The aerospace equipment maintenance ... The current space launch missions are intense, and the utilization of equipment is frequent, demanding increasingly higher responsiveness and capability in maintenance and support. The aerospace equipment maintenance and support chain relies on aerospace equipment maintenance and support facilities, deploying various maintenance and support resources rationally according to specific requirements and principles, ultimately forming a unidirectional functional chain or network from the supply side to the demand side. This system helps address the “bottleneck” issue in the generation of aerospace equipment support capability and significantly improves the level of aerospace equipment maintenance and support. The model construction is a prerequisite for analyzing the formation and operation mechanism of the chain, and identifying factors affecting the efficiency and effectiveness of maintenance and support. With consideration of the particularity of aerospace equipment maintenance and support, the paper extensively investigates the construction of the aerospace equipment maintenance and support chain model by drawing on research achievements in modern supply chain and logistics theories, as well as model construction methods. It develops a structural diagram-based chain model, with symbols as key elements, and establishes an evaluation indicator system, providing insights into understanding and grasping the composition of the aerospace equipment maintenance and support chain effectively. Furthermore, it offers a reference for solving other equipment support chains’ construction and optimization problems. 展开更多
关键词 Space Equipment Safeguard Chain Evaluation System MMS
下载PDF
Multidisciplinary design optimization of a dual-spin guided vehicle
3
作者 Jalal Karimi Mohammad Reza Rajabi +1 位作者 Seyed Hossein Sadati Seyed Mahid Hosseini 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第7期133-148,共16页
In this research,a Multidisciplinary Design Optimization approach is proposed for the dual-spin guided flying projectile design considering external and internal parts of the body as design variables.In this way,a par... In this research,a Multidisciplinary Design Optimization approach is proposed for the dual-spin guided flying projectile design considering external and internal parts of the body as design variables.In this way,a parametric formulation is developed.All related disciplines,including structure,aerodynamics,guidance,and control are considered.Minimum total mass,maximum aerodynamic control effectiveness,minimum miss distance,maximum yield stress in all subsystems,controllability and gyroscopic stability constraints are some of objectives/constraints taken into account.The problem is formulated in All-At-Ones Multidisciplinary Design Optimization approach structure and solved by Simulated Annealing and minimax algorithms.The optimal configurations are evaluated in various aspects.The resulted optimal configurations have met all design objectives and constraints. 展开更多
关键词 Flying projectile optimal design All-at-ones multidisciplinary optimization Structure discipline Guidance and control discipline Aerodynamic discipline
下载PDF
Effect of cold-working on corrosion induced damage in lug joints
4
作者 Ramanath M.N Chikmath L. Murthy H. 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第6期175-182,共8页
Lug joints are preferred joineries for transferring heavy loads to parent components in aerospace vehicles.They experience corrosion due to environmental conditions,improper surface finishes and rubbing displacement b... Lug joints are preferred joineries for transferring heavy loads to parent components in aerospace vehicles.They experience corrosion due to environmental conditions,improper surface finishes and rubbing displacement between the pin and lug-hole.This causes damage of different sizes and shapes near the lug-hole.Stiffness degradation due to corrosion-induced damage is modelled as a through-pit at one of the identified critical locations through stress analysis.The effect of this pit on fatigue crack initiation life is estimated.Lug-hole is pre-stressed by cold-working and the benefits of inducing plastic wake on the intended performance of the lug joint during the damages due to corrosion are brought out and compared with non-cold-worked lug-hole.Numerical analysis is performed on this lug joint with pressfit.The results obtained highlight the benefits of cold-working and the methodology can be extended to damage growth and analyse the effect of surface treatments for better structural integrity of components of aerospace vehicles. 展开更多
关键词 Lug joint CORROSION Crack initiation COLD-WORKING Structural integrity
下载PDF
Investigation of Projectile Impact Behaviors of Graphene Aerogel Using Molecular Dynamics Simulations
5
作者 Xinyu Zhang Wenjie Xia +2 位作者 Yang Wang Liang Wang Xiaofeng Liu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第6期3047-3061,共15页
Graphene aerogel(GA),as a novel solid material,has shown great potential in engineering applications due to its unique mechanical properties.In this study,the mechanical performance of GA under high-velocity projectil... Graphene aerogel(GA),as a novel solid material,has shown great potential in engineering applications due to its unique mechanical properties.In this study,the mechanical performance of GA under high-velocity projectile impacts is thoroughly investigated using full-atomic molecular dynamics(MD)simulations.The study results show that the porous structure and density are key factors determining the mechanical response of GA under impact loading.Specifically,the impact-induced penetration of the projectile leads to the collapse of the pore structure,causing stretching and subsequent rupture of covalent bonds in graphene sheets.Moreover,the effects of temperature on the mechanical performance of GA have been proven to be minimal,thereby highlighting the mechanical stability of GA over a wide range of temperatures.Finally,the energy absorption density(EAD)and energy absorption efficiency(EAE)metrics are adopted to assess the energy absorption capacity of GA during projectile penetration.The research findings of this work demonstrate the significant potential of GA for energy absorption applications. 展开更多
关键词 Graphene aerogel molecular dynamics simulation impact response energy absorption
下载PDF
Simulation Analysis of Deformation Control for Magnetic Soft Medical Robots
6
作者 Jingxi Wang Baoyu Liu +2 位作者 Edmond Q.Wu Jin Ma Ping Li 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第3期794-796,共3页
Dear Editor,This letter presents a biocompatible cross-shaped magnetic soft robot and investigates its deformation mode control strategy through COMSOL modeling and simulation.Magnetic soft robots offer novel avenues ... Dear Editor,This letter presents a biocompatible cross-shaped magnetic soft robot and investigates its deformation mode control strategy through COMSOL modeling and simulation.Magnetic soft robots offer novel avenues for precise treatment within intricate regions of the human body. 展开更多
关键词 ROBOT SIMULATION COMSOL
下载PDF
Least Square Finite Element Model for Analysis of Multilayered Composite Plates under Arbitrary Boundary Conditions
7
作者 Christian Mathew Yao Fu 《World Journal of Engineering and Technology》 2024年第1期40-64,共25页
Laminated composites are widely used in many engineering industries such as aircraft, spacecraft, boat hulls, racing car bodies, and storage tanks. We analyze the 3D deformations of a multilayered, linear elastic, ani... Laminated composites are widely used in many engineering industries such as aircraft, spacecraft, boat hulls, racing car bodies, and storage tanks. We analyze the 3D deformations of a multilayered, linear elastic, anisotropic rectangular plate subjected to arbitrary boundary conditions on one edge and simply supported on other edge. The rectangular laminate consists of anisotropic and homogeneous laminae of arbitrary thicknesses. This study presents the elastic analysis of laminated composite plates subjected to sinusoidal mechanical loading under arbitrary boundary conditions. Least square finite element solutions for displacements and stresses are investigated using a mathematical model, called a state-space model, which allows us to simultaneously solve for these field variables in the composite structure’s domain and ensure that continuity conditions are satisfied at layer interfaces. The governing equations are derived from this model using a numerical technique called the least-squares finite element method (LSFEM). These LSFEMs seek to minimize the squares of the governing equations and the associated side conditions residuals over the computational domain. The model is comprised of layerwise variables such as displacements, out-of-plane stresses, and in- plane strains, treated as independent variables. Numerical results are presented to demonstrate the response of the laminated composite plates under various arbitrary boundary conditions using LSFEM and compared with the 3D elasticity solution available in the literature. 展开更多
关键词 Multilayered Composite and Sandwich Plate Transverse Stress Continuity Condition Arbitrary Boundary Condition Layerwise Theory Least-Squares Formulation
下载PDF
Influence of Shim Layers on Progressive Failure of a Composite Componentin Composite-Aluminum Bolted Joint in Aerospace Structural Assembly 被引量:2
8
作者 Cephas Yaw Attahu An Luling +1 位作者 Li Zhaoqing Gao Guoqiang 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2018年第1期188-202,共15页
The influence of varying shim layers on the progressive damage/failure of a composite component in a bolted composite-aluminum aerospace structural assembly was investigated using a non-linear three-dimensional(3 D)st... The influence of varying shim layers on the progressive damage/failure of a composite component in a bolted composite-aluminum aerospace structural assembly was investigated using a non-linear three-dimensional(3 D)structural solid elements assembled model of a carbon fiber-reinforced polymer(CFRP)-aluminum single-lap joint with a titanium(Ti-6 Al-4 V)fastener and a washer generated with the commercial finite element(FE)software package,ABAQUS/Standard.A progressive failure algorithm written in Fortran code with a set of appropriate degradation rules was incorporated as a user subroutine in ABAQUS to simulate the non-linear damage behavior of the composite component in the composite-aluminum bolted aerospace structure.The assembled 3 DFE model simulated,as well as the specimen for the experimental testing consisted of a carbon-epoxy IMS-977-2 substrate,aluminum alloy 7075-T651 substrate,liquid shim(Hysol EA 9394),solid peelable fiberglass shim,a titanium fastener,and a washer.In distinction to previous investigations,the influence of shim layers(liquid shim and solid peelable fiberglass shim)inserted in-between the faying surfaces(CFRP and aluminum alloy substrates)were investigated by both numerical simulations and experimental work.The simulated model and test specimens conformed to the standard test configurations for both civil and military standards.The numerical simulations correlated well with the experimental results and it has been found that:(1)The shimming procedure as agreed upon by the aerospace industry for the resolution of assembly gaps in bolted joints for composite materials is the same for a composite-aluminum structure;liquid shim series(0.3,0.5 and 0.7 mm thicknesses)prolonged the service life of the composite component whereas a solid peelable fiberglass shim most definitely had a better influence on the 0.9 assembly gap compared with the liquid shim;(2)The shim layers considerably influenced the structural strength of the composite component by delaying its ultimate failure thereby increasing its service life;and(3)Increasing the shim layer′s thickness led to a significant corresponding effect on the stiffness but with minimal effect on the ultimate load. 展开更多
关键词 composite-aluminum progressive failure MODELING finite element MODELING single-lap BOLTED joint SHIMMING AEROSPACE structures
下载PDF
A three-dimensional numerical study on the effect of geometric asymmetry on arcjet thruster performance 被引量:2
9
作者 Hari Prasad NANDYALA Amit KUMAR Jayachandran THANKAPPAN 《Plasma Science and Technology》 SCIE EI CAS CSCD 2023年第5期131-146,共16页
In an arcjet thruster,the cathode and constrictor degrade with time,and the electrical arc discharge may become unsymmetrical.In this work,a three-dimensional numerical model of a hydrogen plasma arcjet is developed a... In an arcjet thruster,the cathode and constrictor degrade with time,and the electrical arc discharge may become unsymmetrical.In this work,a three-dimensional numerical model of a hydrogen plasma arcjet is developed and validated to study the effect of unsymmetrical electric arc discharge on thruster performance.The unsymmetrical arc discharge is realized by introducing a radial shift of the cathode so that the cathode tip offset is 80μm(25%of the constrictor radius).Simulations are conducted for both axially centered cathode(coaxial)and off-centered cathode(non-coaxial)configurations with identical propellant flow rates and input current.Simulations show asymmetrical arc discharge in the non-coaxial cathode configuration,resulting in azimuthally asymmetric Joule heating,species concentrations,and velocity field.This asymmetry continues as the plasma expands in the divergent section of the nozzle.Temperature,species concentrations,and axial velocity exhibit asymmetric radial distribution at the nozzle exit.The computed Joule heating was found to reduce with cathode shift,and consequently,the thrust and specific impulse of the thruster was decreased by about 6.6%.In the case of the non-coaxial cathode,geometric asymmetry also induces a small side thrust. 展开更多
关键词 ARCJET geometric asymmetry 3D numerical modelling space electric propulsion HYDROGEN
下载PDF
Dynamic behaviors of water-saturated and frozen sandstone subjected to freeze-thaw cycles 被引量:3
10
作者 Feng Gao Cong Li +2 位作者 Xin Xiong Yanan Zhang Keping Zhou 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第6期1476-1490,共15页
In high-altitude cold areas,freeze-thaw(F-T)cycles induced by day-night and seasonal temperature changes cause numerous rock mass slope engineering disasters.To investigate the dynamic properties of rock in the natura... In high-altitude cold areas,freeze-thaw(F-T)cycles induced by day-night and seasonal temperature changes cause numerous rock mass slope engineering disasters.To investigate the dynamic properties of rock in the natural environment of a high-altitude cold area,standard specimens were drilled from the slope of the Jiama copper mine in Tibet,and dynamic compression tests were performed on watersaturated and frozen sandstone with different numbers of F-T cycles(0,10,20,30,and 40)by the split Hopkinson pressure bar(SHPB)system with a cryogenic control system.The influence of water-saturated and frozen conditions on the dynamic performance of sandstone was investigated.The following conclusions are drawn:(1)With increasing strain rate,the attenuation factor(la)of water-saturated sandstone and the intensifying factor(li)of frozen sandstone linearly increase.As the number of F-T cycles increases,the dependence factor(ld)of water-saturated sandstone linearly decreases,whereas the ld of frozen sandstone linearly increases.(2)The prediction equation of the dynamic compressive strength of water-saturated and frozen sandstone is obtained,which can be used to predict the dynamic compressive strength of sandstone after various F-T cycles based on the strain rate.(3)The mesoscopic mechanism of water-saturated and frozen sandstone’s dynamic compressive strength evolution is investigated.The water softening effect causes the dynamic compressive strength of water-saturated sandstone to decrease,whereas the strengthening effect of pore ice causes it to increase.(4)The decrease in the relative dynamic compressive strength of water-saturated sandstone and the increase in the relative dynamic compressive strength of frozen sandstone can be attributed to the increased porosity. 展开更多
关键词 Freeze-thaw(F-T)cycle damage Dynamic properties Split Hopkinson pressure bar(SHPB) Increasing rate of porosity
下载PDF
Deciphering the degradation discrepancy in Ni-rich cathodes with a diverse proportion of[003]crystallographic textures 被引量:3
11
作者 Lang Qiu Mengke Zhang +13 位作者 Yang Song Zhenguo Wu Yan-Fang Zhu Jun Zhang Dong Wang Hai-Yan Hu Hong-Wei Li Hang-Rui Liu Xin-Bei Jia Jian Peng Shuangqiang Chen Zuguang Yang Yao Xiao Xiaodong Guo 《Carbon Energy》 SCIE CSCD 2023年第7期15-26,共12页
The crystal plane plays a very important role in the properties of Ni-rich cathodes.[003]crystallographic texture regulation has been proven to improve structural stability,and yet,the discrepancy of particles with di... The crystal plane plays a very important role in the properties of Ni-rich cathodes.[003]crystallographic texture regulation has been proven to improve structural stability,and yet,the discrepancy of particles with different exposed ratios of[003]in structural attenuation has not been clarified.Herein,we have unraveled comprehensively the structural decay difference for Ni-rich cathodes’primary particles with the different percentages of exposed[003]by regulating the precursor coprecipitation process.The findings based on structural characterization,first-principles calculations,finite element analysis,and electrochemical test reveal that the length and width of particles represent[110]and[003]directions,respectively,and show that cathode particles with a higher[110]/[003]ratio can effectively inhibit structure degradation and intergranular/intragranular crack formation owing to the low oxygen vacancy formation energy on(003)planes and the small local stress on secondary/primary particles.This study may provide guidance for the structural design of layered cathodes. 展开更多
关键词 cracks crystal plane Ni-rich cathodes oxygen vacancy structure degradation
下载PDF
Assessment of a two-surface plasticity model for hexagonal materials 被引量:1
12
作者 R.Vigneshwaran A.A.Benzerga 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第12期4431-4444,共14页
A computationally efficient two-surface plasticity model is assessed against crystal plasticity. Focus is laid on the mechanical behavior of magnesium alloys in the presence of ductility-limiting defects, such as void... A computationally efficient two-surface plasticity model is assessed against crystal plasticity. Focus is laid on the mechanical behavior of magnesium alloys in the presence of ductility-limiting defects, such as voids. The two surfaces separately account for slip and twinning such that the constitutive formulation captures the evolving plastic anisotropy and evolving tension-compression asymmetry. For model identification, a procedure is proposed whereby the initial guess is based on a combination of experimental data and computationally intensive polycrystal calculations from the literature. In drawing direct comparisons with crystal plasticity, of which the proposed model constitutes a heuristically derived reduced-order model, the available crystal plasticity simulations are grouped in two datasets. A calibration set contains minimal data for both pristine and porous material subjected to one loading path. Then the two-surface model is assessed against a broader set of crystal plasticity simulations for voided unit cells under various stress states and two loading orientations. The assessment also includes microstructure evolution(rate of growth of porosity and void distortion). The ability of the two-surface model to capture essential features of crystal plasticity is analyzed along with an evaluation of computational cost. The prospects of using the model in guiding the development of physically sound damage models in Mg alloys are put forth in the context of high-throughput simulations. 展开更多
关键词 HCP metals Plastic anisotropy Reduced order model Void growth Void coalescence
下载PDF
Additive manufacturing of sustainable biomaterials for biomedical applications 被引量:2
13
作者 Zia Ullah Arif Muhammad Yasir Khalid +5 位作者 Reza Noroozi Mokarram Hossain Hao Tian Harvey Shi Ali Tariq Seeram Ramakrishna Rehan Umer 《Asian Journal of Pharmaceutical Sciences》 SCIE CAS 2023年第3期1-36,共36页
Biopolymers are promising environmentally benign materials applicable in multifarious applications.They are especially favorable in implantable biomedical devices thanks to their excellent unique properties,including ... Biopolymers are promising environmentally benign materials applicable in multifarious applications.They are especially favorable in implantable biomedical devices thanks to their excellent unique properties,including bioactivity,renewability,bioresorbability,biocompatibility,biodegradability and hydrophilicity.Additive manufacturing(AM)is a flexible and intricate manufacturing technology,which is widely used to fabricate biopolymer-based customized products and structures for advanced healthcare systems.Three-dimensional(3D)printing of these sustainable materials is applied in functional clinical settings including wound dressing,drug delivery systems,medical implants and tissue engineering.The present review highlights recent advancements in different types of biopolymers,such as proteins and polysaccharides,which are employed to develop different biomedical products by using extrusion,vat polymerization,laser and inkjet 3D printing techniques in addition to normal bioprinting and four-dimensional(4D)bioprinting techniques.It also incorporates the influence of nanoparticles on the biological and mechanical performances of 3D-printed tissue scaffolds,and addresses current challenges as well as future developments of environmentally friendly polymeric materials manufactured through the AMtechniques.Ideally,there is a need for more focused research on the adequate blending of these biodegradable biopolymers for achieving useful results in targeted biomedical areas.We envision that biopolymer-based 3D-printed composites have the potential to revolutionize the biomedical sector in the near future. 展开更多
关键词 3D printing Biopolymers BIOMEDICAL Tissue engineering Sustainable biomaterials Additive manufacturing
下载PDF
Design and Robustness Analysis of a Wave-Based Controller for Tethered Towing of Defunct Satellites 被引量:1
14
作者 Rui Qi Yang Zhang Krishna D.Kumar 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2023年第1期278-280,共3页
Dear Editor, A microgravity environment in space, the elasticity of the tether,and complex flexible appendages make the tethered-towing system a nonlinear and underactuated system, which is sensitive and difficult to ... Dear Editor, A microgravity environment in space, the elasticity of the tether,and complex flexible appendages make the tethered-towing system a nonlinear and underactuated system, which is sensitive and difficult to stabilize. This letter develops a controller based on wave propagation for tethered towing of defunct satellites, and carries out a robustness analysis of the controller via numerical simulation. 展开更多
关键词 system ELASTICITY LETTER
下载PDF
Microstructural image based convolutional neural networks for efficient prediction of full-field stress maps in short fiber polymer composites
15
作者 S.Gupta T.Mukhopadhyay V.Kushvaha 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第6期58-82,共25页
The increased demand for superior materials has highlighted the need of investigating the mechanical properties of composites to achieve enhanced constitutive relationships.Fiber-reinforced polymer composites have eme... The increased demand for superior materials has highlighted the need of investigating the mechanical properties of composites to achieve enhanced constitutive relationships.Fiber-reinforced polymer composites have emerged as an integral part of materials development with tailored mechanical properties.However,the complexity and heterogeneity of such composites make it considerably more challenging to have precise quantification of properties and attain an optimal design of structures through experimental and computational approaches.In order to avoid the complex,cumbersome,and labor-intensive experimental and numerical modeling approaches,a machine learning(ML)model is proposed here such that it takes the microstructural image as input with a different range of Young’s modulus of carbon fibers and neat epoxy,and obtains output as visualization of the stress component S11(principal stress in the x-direction).For obtaining the training data of the ML model,a short carbon fiberfilled specimen under quasi-static tension is modeled based on 2D Representative Area Element(RAE)using finite element analysis.The composite is inclusive of short carbon fibers with an aspect ratio of 7.5that are infilled in the epoxy systems at various random orientations and positions generated using the Simple Sequential Inhibition(SSI)process.The study reveals that the pix2pix deep learning Convolutional Neural Network(CNN)model is robust enough to predict the stress fields in the composite for a given arrangement of short fibers filled in epoxy over the specified range of Young’s modulus with high accuracy.The CNN model achieves a correlation score of about 0.999 and L2 norm of less than 0.005 for a majority of the samples in the design spectrum,indicating excellent prediction capability.In this paper,we have focused on the stage-wise chronological development of the CNN model with optimized performance for predicting the full-field stress maps of the fiber-reinforced composite specimens.The development of such a robust and efficient algorithm would significantly reduce the amount of time and cost required to study and design new composite materials through the elimination of numerical inputs by direct microstructural images. 展开更多
关键词 Micromechanics of fiber-reinforced composites Machine learning assisted stress prediction Microstructural image-based machine learning CNN based stress analysis
下载PDF
In-plane and out-of-plane quasi-static compression performance enhancement of 3D printed re-entrant diamond auxetic metamaterial with geometrical tuning and fiber reinforcement
16
作者 Niranjan Chikkanna Shankar Krishnapillai Velmurugan Ramachandran 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第7期1-17,共17页
Auxetic materials are cellular materials with a unique property of negative Poisson’s ratio.The auxeticity and performance of these metamaterials utterly depend on the geometrical parameters and loading direction.For... Auxetic materials are cellular materials with a unique property of negative Poisson’s ratio.The auxeticity and performance of these metamaterials utterly depend on the geometrical parameters and loading direction.For the first time,the quasi-static uniaxial compression performance of fused filament fabricated re-entrant diamond auxetic metamaterial is evaluated in the x-direction(in-plane)and z-direction(out-of-plane).The most commonly used thermoplastic feedstock,Acrylonitrile butadiene styrene,is considered a material of choice.The effect of influential geometrical parameters of the re-entrant diamond structure and printing parameter is systematically studied using Taguchi’s design of experiments.Grey-based multi-objective optimisation technique has been adopted to arrive at the optimal structure.Efforts are made to improve the stiffness and strength of the structure with fibre reinforcements.Micro glass fibre reinforcements have enhanced specific strength and stiffness in both in-plane and out-ofplane directions.A sevenfold and thirteen times increase in specific strength and energy absorption is evident for glass fibre-reinforced structures in out-of-plane directions compared to in-plane ones.Proper tuning of geometrical parameters of the re-entrant diamond structure can result in a Poisson’s ratio of up to-3.49 when tested in the x-direction.The parametric study has illustrated the tailorability of the structure according to the application requirements.The statistical study has signified each considered parameter’s contribution to the compression performance characteristics of the 3D printed re-entrant diamond auxetic metamaterial. 展开更多
关键词 Auxeticity Fibre reinforcement Tailorability Anisotropy Geometrical influence Property enhancement
下载PDF
Drop weight impact analysis of GFRP tubes with hollow glass particle-filled matrix
17
作者 Daniel Paul R.Velmurugan N.K.Gupta 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第11期1-9,共9页
Protecting occupants or payloads in crashes and blasts is of utmost importance in both moving and immobile structures.One way of achieving this is by using a sacrificial energy absorber.Composite tubes have been studi... Protecting occupants or payloads in crashes and blasts is of utmost importance in both moving and immobile structures.One way of achieving this is by using a sacrificial energy absorber.Composite tubes have been studied as potential energy absorbers due to their ability to fail progressively under axial compression.In this study,the energy absorption capability of these tubes is enhanced by adding hollow glass particles to the matrix.Drop-weight tests are performed on composite tubes,and a digital image correlation(DIC)-based technique is used to capture their load-displacement behaviour.This eliminates the use of electronic data acquisition systems,load cells,and accelerometers.The load-displacement curves of the tubes are obtained from the DIC-based technique and examined to understand their crushing behaviour.Although the mean crush load shows a drop,an increase in crush length is noticed.The specific energy absorbed by the tubes improves with an increase in GMB volume fraction.The addition of 0.1,0.2,0.3 and 0.4 vol fractions of GMB results in the specific energy absorption increasing by6.6%,14.7%,24%and 36.6%,respectively,compared to neat glass fibre-epoxy tubes.Visual examination of the tubes and comparison with tubes subject to quasi-static compression is also performed. 展开更多
关键词 Composite tubes Syntactic foam Impact Axial compression Digital image correlation
下载PDF
Eigen value analysis of composite hollow shafts using modified EMBT formulation considering the shear deformation along the thickness direction
18
作者 Pavani Udatha A.S.Sekhar Velmurugan R 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第10期1-12,共12页
Composite hollow shafts are used in power transmission applications due to their high specific stiffness and high specific strength.The dynamic characteristics of these shafts are important for transmission applicatio... Composite hollow shafts are used in power transmission applications due to their high specific stiffness and high specific strength.The dynamic characteristics of these shafts are important for transmission applications.Dynamic modelling of these shafts is generally carried out using Equivalent Modulus Beam Theory(EMBT)and Layerwise Beam Theory(LBT)formulations.The EMBT formulation is modified by considering stacking sequence,shear normal coupling,bending twisting coupling and bending stretching coupling.It is observed that modified EMBT formulation is underestimating the shafts stiffness at lower length/mean diameter(l/dm)ratios.In the present work,a new formulation is developed by adding shear deformation along the thickness direction to the existing modified EMBT formulation.The variation of shear deformation along the thickness direction is found using different shear deformation theories,i.e.,first-order shear deformation theory(FSDBT),parabolic shear deformation theory(PSDBT),trigonometric shear deformation theory(TSDBT),and hyperbolic shear deformation theory(HSDBT).The analysis is performed at l/d_(m) ratios of 5,10,15,20,25,30,35,and 40 for carbon/epoxy composites,E-glass/epoxy composites,and boron/epoxy composite shafts.The results show that new formulation has improved the bending natural frequency of the composite shafts for l/d_(m)<15 in comparison with modified EMBT.The effect of new formulation is more significant for the second and third bending modes of natural frequencies. 展开更多
关键词 Composite hollow shafts Bending natural frequency Modified EMBT formulation Thickness effect
下载PDF
Burning rate analysis of laser controlled 5-aminotetrazole propellant
19
作者 Nianbai He Ruiqi Shen +3 位作者 Luigi T.DeLuca Lizhi Wu Wei Zhang Yinghua Ye 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第4期10-27,共18页
As an innovative propulsion technique, laser augmented chemical propulsion(LACP) seems superior to the traditional ones. However, the corresponding combustion theories have still to be ascertained for LACP. Burning ra... As an innovative propulsion technique, laser augmented chemical propulsion(LACP) seems superior to the traditional ones. However, the corresponding combustion theories have still to be ascertained for LACP. Burning rate of 5-aminotetrazole(5-ATZ) propellant has been studied by testing pressed samples under different combustor pressures and laser powers. Based on micro computed tomography(Micro CT),an advanced thickness-over-time(TOT) method to characterize the regression of the produced nonplanar burning surface is established. Because of a shell structure covering the combustion surface,the burning rate of the implemented 5-ATZ propellant is not constant during laser ablation. Resorting to functional fitting, a new law of non-constant burning including the effect of the observed unique burning surface structures is proposed. Accordingly, applicable combustion conditions of 5-ATZ based propellants have been preliminarily speculated for future research activities. 展开更多
关键词 5-Aminotetrazole(5-ATZ) Laser-augmented chemical propulsion(LACP) Non-constant burning rate Micro computed tomography(MicroCT) Non-planar burning surface
下载PDF
A combined experimental and crystal plasticity study of grain size effects in magnesium alloys
20
作者 Aaditya Lakshmanan Mohsen Taheri Andani +3 位作者 Mohammadreza Yaghoobi John Allison Amit Misra Veera Sundararaghavan 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第12期4445-4467,共23页
This work presents a method to incorporate the micro Hall-Petch equation into the crystal plasticity finite element(CPFE) framework accounting for the microstructural features to understand the coupling between grain ... This work presents a method to incorporate the micro Hall-Petch equation into the crystal plasticity finite element(CPFE) framework accounting for the microstructural features to understand the coupling between grain size, texture, and loading direction in magnesium alloys.The effect of grain size and texture is accounted for by modifying the slip resistances of individual basal and prismatic systems based on the micro Hall-Petch equation. The modification based on the micro Hall-Petch equation endows every slip system at each microstructural point with a slip system-level grain size and maximum compatibility factor, which are in turn used to modify the slip resistance. While the slip-system level grain size is a measure of the grain size, the maximum compatibility factor encodes the effect of the grain boundary on the slip system resistance modification and is computed based on the Luster-Morris factor. The model is calibrated using experimental stress-strain curves of Mg-4Al samples with three different grain sizes from which the Hall-Petch coefficients are extracted and compared with Hall-Petch coefficients predicted using original parameters from previous work. The predictability of the model is then evaluated for a Mg-4Al sample with different texture and three grain sizes subjected to loading in different directions. The calibrated parameters are then used for some parametric studies to investigate the variation of Hall-Petch slope for different degrees of simulated spread in basal texture,variation of Hall-Petch slope with loading direction relative to basal poles for a microstructure with strong basal texture, and variation of yield strength with change in grain morphology. The proposed approach to incorporate the micro Hall-Petch equation into the CPFE framework provides a foundation to quantitatively model more complicated scenarios of coupling between grain size, texture and loading direction in the plasticity of Mg alloys. 展开更多
关键词 HALL-PETCH Crystal plasticity Grain size TEXTURE Magnesium alloys
下载PDF
上一页 1 2 29 下一页 到第
使用帮助 返回顶部