In view of the recognition of the importance of the interdependent behavior of strength and stiffness of walltype structural elements,the seismic demand of plan-asymmetric systems is revisited.Useful strength distribu...In view of the recognition of the importance of the interdependent behavior of strength and stiffness of walltype structural elements,the seismic demand of plan-asymmetric systems is revisited.Useful strength distribution strategies,i.e.,'Center of Strength-Center of Mass(CV-CM) coinciding' and 'Balanced Center of Strength-Center of Resistance(CVCR)' are adopted.Design charts for the seismic demand of classical uni-directionally and bi-directionally asymmetric systems are developed in a simple unified format.A conceptual framework is also outlined to conveniently apply the design charts.Illustrations are included to explain the use of the current recommendations in practical design.The study also highlights the relative performance of 'CV-CM coinciding' and 'Balanced CV-CR' criteria.展开更多
文摘In view of the recognition of the importance of the interdependent behavior of strength and stiffness of walltype structural elements,the seismic demand of plan-asymmetric systems is revisited.Useful strength distribution strategies,i.e.,'Center of Strength-Center of Mass(CV-CM) coinciding' and 'Balanced Center of Strength-Center of Resistance(CVCR)' are adopted.Design charts for the seismic demand of classical uni-directionally and bi-directionally asymmetric systems are developed in a simple unified format.A conceptual framework is also outlined to conveniently apply the design charts.Illustrations are included to explain the use of the current recommendations in practical design.The study also highlights the relative performance of 'CV-CM coinciding' and 'Balanced CV-CR' criteria.