In this paper, we studied the effects of thermal radiation, Joule heating and viscous dissipation on forced convection flow in a magnetohydrodynamics (namely MHD) pump in rectangular channel with uniform surface tempe...In this paper, we studied the effects of thermal radiation, Joule heating and viscous dissipation on forced convection flow in a magnetohydrodynamics (namely MHD) pump in rectangular channel with uniform surface temperature. Numerical results were obtained by solving the nonlinear governing momentum and energy equations with steady state fully developed assumptions by finite difference method. The Lorentz force in momentum and Joule heating, and viscous dissipation in energy equation with the Rossel and approximation are assumed to increase the knowledge of the details of the temperature and flow field in order to design a MHD pump. The purpose of this study is the parametric study of a Newtonian fluid in a MHD pump. The values of maximum velocity, fully developed Nusselt number for different values of magnetic density flux, Brinkman number, viscous heating and radiation number are obtained. However, the maximum temperature stays almost constant with magnetic field, as current increases, the velocity and the temperature increase too. Besides, the increase of thermal radiation number causes the increase in effective thermal conductivity and decrease in thermal boundary layer and the Nusselt number at wall.展开更多
The discontinuous Galerkin(DG)finite element method has been popular as a numerical technique for solving the conservation laws.In the present study,in order to investigate the shock wave structures in highly thermal ...The discontinuous Galerkin(DG)finite element method has been popular as a numerical technique for solving the conservation laws.In the present study,in order to investigate the shock wave structures in highly thermal nonequilibrium,an explicit modal cell-based DG scheme is developed for solving the conservation laws in conjunction with nonlinear coupled constitutive relations(NCCR).Convergent iterative methods for solving algebraic constitutive relations are also implemented in the DG scheme.It is shown that the new scheme works well for all Mach numbers,for example,Ma=15.展开更多
Joule heating effects on a slit microcharmel filled with electrolytes are comprehensively investigated with emphasis on the thermal boundary conditions. An accurate analytical expression is proposed for the electrical...Joule heating effects on a slit microcharmel filled with electrolytes are comprehensively investigated with emphasis on the thermal boundary conditions. An accurate analytical expression is proposed for the electrical field and the temperature distributions due to Joule heating are numerically obtained from the energy balance equation. The results show that a thermal design based on the average electric potential difference between electrodes can cause severe underestimation of Joule heating. In addition, the parame- tric study of thermal boundary conditions gives us an insight into the best cooling scenario for microfluidic devices. Other significant thermal characteristics, including Nusselt number, thermophoretic force, and entropy generation, are discussed as well. This study will provide useful information for the optimization of a bioMEMS device in relation to the thermal aspect.展开更多
文摘In this paper, we studied the effects of thermal radiation, Joule heating and viscous dissipation on forced convection flow in a magnetohydrodynamics (namely MHD) pump in rectangular channel with uniform surface temperature. Numerical results were obtained by solving the nonlinear governing momentum and energy equations with steady state fully developed assumptions by finite difference method. The Lorentz force in momentum and Joule heating, and viscous dissipation in energy equation with the Rossel and approximation are assumed to increase the knowledge of the details of the temperature and flow field in order to design a MHD pump. The purpose of this study is the parametric study of a Newtonian fluid in a MHD pump. The values of maximum velocity, fully developed Nusselt number for different values of magnetic density flux, Brinkman number, viscous heating and radiation number are obtained. However, the maximum temperature stays almost constant with magnetic field, as current increases, the velocity and the temperature increase too. Besides, the increase of thermal radiation number causes the increase in effective thermal conductivity and decrease in thermal boundary layer and the Nusselt number at wall.
基金Supported by the National Research Foundation of the Ministry of Education,Science and Technology of Korea(Priority Research Centers Program NRF 2012-048078Basic Science Research Program NRF 2012 R1A2A2A02-046270)
文摘The discontinuous Galerkin(DG)finite element method has been popular as a numerical technique for solving the conservation laws.In the present study,in order to investigate the shock wave structures in highly thermal nonequilibrium,an explicit modal cell-based DG scheme is developed for solving the conservation laws in conjunction with nonlinear coupled constitutive relations(NCCR).Convergent iterative methods for solving algebraic constitutive relations are also implemented in the DG scheme.It is shown that the new scheme works well for all Mach numbers,for example,Ma=15.
基金supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (Grant No.NRF-2012R1A1A1042920)
文摘Joule heating effects on a slit microcharmel filled with electrolytes are comprehensively investigated with emphasis on the thermal boundary conditions. An accurate analytical expression is proposed for the electrical field and the temperature distributions due to Joule heating are numerically obtained from the energy balance equation. The results show that a thermal design based on the average electric potential difference between electrodes can cause severe underestimation of Joule heating. In addition, the parame- tric study of thermal boundary conditions gives us an insight into the best cooling scenario for microfluidic devices. Other significant thermal characteristics, including Nusselt number, thermophoretic force, and entropy generation, are discussed as well. This study will provide useful information for the optimization of a bioMEMS device in relation to the thermal aspect.