OBJECTIVE To determine the functional role of hydrogen sulfide(H_2S) in protecting against mitochondrial dysfunction in heart failure through the inhibition of Ca^(2+)/calmodulin-dependent protein kinaseⅡ(Ca MKⅡ) us...OBJECTIVE To determine the functional role of hydrogen sulfide(H_2S) in protecting against mitochondrial dysfunction in heart failure through the inhibition of Ca^(2+)/calmodulin-dependent protein kinaseⅡ(Ca MKⅡ) using wild type and CSE knockout mouse models.METHODS Continuous subcutaneous injection isoprenaline(7.5 mg·kg^(-1) per day),once a day for 4 weeks to induce heart failure in male C57BL/6(6-8 weeks old) mice and CSE-/-mice.150 μmol·L^(-1) H_2O_2 was used to induce oxidative stress in H9c2 cells.Echocardiograph was used to detect cardiac parameters.H&E stain and Masson stain was to observation histopathological changes.Western blot was used to detect protein expression and activity.The si RNA was used to silence protein expression.HPLC was used to detect H_2S level.Biotin assay was used to detect the level of S-sulfhydration protein.RESULTS Treatment with S-propyl-L-cysteine(SPRC) or sodium hydrosulfide(Na HS),modulators of blood H_2S levels,attenuated the development of heart failure in animals,reduced lipid peroxidation,and preserved mitochondrial function.The inhibition Ca MKⅡ phosphorylation by SPRC and Na HS as demonstrated using both in vivo and in vitro models corresponded with the cardioprotective effects of these compounds.Interestingly,Ca MKⅡ activity was found to be elevated in CSE-/-mice as compared to wild type animals and the phosphorylation status of Ca MK Ⅱ appeared to relate to the severity of heart failure.Importantly,in wild type mice SPRC was found to promote S-sulfhydration of Ca MKⅡ leading to reduced activity of this protein however,in CSE-/-mice S-sulfhydration was abolished following SPRC treatment.CONCLUSION A novel mechanism depicting a role of S-sulfhydration in the regulation of Ca MKⅡ is presented.SPRC mediated S-sulfhydration of Ca MKⅡ was found to inhibit Ca MKⅡ activity and to preserve cardiovascular homeostasis.展开更多
Objective: Autologous fat-grafting for the purpose of breast augmentation has gained widespread acceptance as a viable and safe alternative to classical breast implant procedures and has recently been successfully app...Objective: Autologous fat-grafting for the purpose of breast augmentation has gained widespread acceptance as a viable and safe alternative to classical breast implant procedures and has recently been successfully applied to buttock augmentation. Due to the numerous patient re-positionings and widely variable OR time, these procedures present unique challenges for anesthesiologists. Our goal is to discuss the current surgical methods, anesthetic methods, risks and benefits of this procedure. Methods: This is a retrospective cohort study in the setting of the operating room. Twenty-nine consecutive cases of mega-volume fat transplantation, defined as >300 cc to an individual site, performed by one surgeon, were reviewed. Age, Body Mass Index, total fat injected, total operating room time, maximum intraoperative temperature, minimum intraoperative and temperature were measured. RESULTS: Our procedure has enjoyed a 100% patient satisfaction rate. Analysis reveals high variability in age (21 - 57), total fat injected (200 cc - 1990 cc), patient Body Mass Index (18.8 - 42.2) and total operating room time (1:23:00 - 6:14:00) for our procedures. There were no instances of major complications in this cohort. Conclusions: Autologous fat transplantation for the purposes of breast and buttock augmentation is an emerging technique that shows great promise and high patient satisfaction, but providing unique challenges for anesthesiologists and surgeons.展开更多
Purpose: To share our clinical experience of an optimized and comprehensive pediatric TBI technique. Methods and Materials: Through the use of incident learning, safety-critical areas were identified in our procedure ...Purpose: To share our clinical experience of an optimized and comprehensive pediatric TBI technique. Methods and Materials: Through the use of incident learning, safety-critical areas were identified in our procedure for total body irradiation (TBI) for pediatric patients under anesthesia for bone-marrow transplant. The previous procedure lacked flexibility to accommodate various requests from the anesthesia team due to the wide range of patient sizes. To address this issue and to improve the process overall, we updated our procedure for TBI simulation, dosimetry planning, patient setup during treatment, and in vivo dosimetry. A simulation form was redesigned with additional detailed instructions and documentation requirements. The dose calculation procedure was reformulated to remove dependence on setup variations. Tissue compensation determination and therefore dose uniformity were improved by introducing rigorous calculation methods. Calculations were performed on 28 previously-treated patients to compare the dose uniformity using the new versus previous methods. Results: The new procedures improve interdepartmental communication, simplify the workflow, decrease the risk of treating patients in a setup that differs from that used during the simulation, and reduce dose heterogeneity. The new compensator design significantly improved patient dose uniformity: 0.8% ± 0.4% (new method) vs. 4.2% ± 2.3% (previous method) (p Conclusion: A near-miss incident reporting system was used to improve the safety and quality of pediatric TBI procedures under anesthesia.展开更多
文摘OBJECTIVE To determine the functional role of hydrogen sulfide(H_2S) in protecting against mitochondrial dysfunction in heart failure through the inhibition of Ca^(2+)/calmodulin-dependent protein kinaseⅡ(Ca MKⅡ) using wild type and CSE knockout mouse models.METHODS Continuous subcutaneous injection isoprenaline(7.5 mg·kg^(-1) per day),once a day for 4 weeks to induce heart failure in male C57BL/6(6-8 weeks old) mice and CSE-/-mice.150 μmol·L^(-1) H_2O_2 was used to induce oxidative stress in H9c2 cells.Echocardiograph was used to detect cardiac parameters.H&E stain and Masson stain was to observation histopathological changes.Western blot was used to detect protein expression and activity.The si RNA was used to silence protein expression.HPLC was used to detect H_2S level.Biotin assay was used to detect the level of S-sulfhydration protein.RESULTS Treatment with S-propyl-L-cysteine(SPRC) or sodium hydrosulfide(Na HS),modulators of blood H_2S levels,attenuated the development of heart failure in animals,reduced lipid peroxidation,and preserved mitochondrial function.The inhibition Ca MKⅡ phosphorylation by SPRC and Na HS as demonstrated using both in vivo and in vitro models corresponded with the cardioprotective effects of these compounds.Interestingly,Ca MKⅡ activity was found to be elevated in CSE-/-mice as compared to wild type animals and the phosphorylation status of Ca MK Ⅱ appeared to relate to the severity of heart failure.Importantly,in wild type mice SPRC was found to promote S-sulfhydration of Ca MKⅡ leading to reduced activity of this protein however,in CSE-/-mice S-sulfhydration was abolished following SPRC treatment.CONCLUSION A novel mechanism depicting a role of S-sulfhydration in the regulation of Ca MKⅡ is presented.SPRC mediated S-sulfhydration of Ca MKⅡ was found to inhibit Ca MKⅡ activity and to preserve cardiovascular homeostasis.
文摘Objective: Autologous fat-grafting for the purpose of breast augmentation has gained widespread acceptance as a viable and safe alternative to classical breast implant procedures and has recently been successfully applied to buttock augmentation. Due to the numerous patient re-positionings and widely variable OR time, these procedures present unique challenges for anesthesiologists. Our goal is to discuss the current surgical methods, anesthetic methods, risks and benefits of this procedure. Methods: This is a retrospective cohort study in the setting of the operating room. Twenty-nine consecutive cases of mega-volume fat transplantation, defined as >300 cc to an individual site, performed by one surgeon, were reviewed. Age, Body Mass Index, total fat injected, total operating room time, maximum intraoperative temperature, minimum intraoperative and temperature were measured. RESULTS: Our procedure has enjoyed a 100% patient satisfaction rate. Analysis reveals high variability in age (21 - 57), total fat injected (200 cc - 1990 cc), patient Body Mass Index (18.8 - 42.2) and total operating room time (1:23:00 - 6:14:00) for our procedures. There were no instances of major complications in this cohort. Conclusions: Autologous fat transplantation for the purposes of breast and buttock augmentation is an emerging technique that shows great promise and high patient satisfaction, but providing unique challenges for anesthesiologists and surgeons.
文摘Purpose: To share our clinical experience of an optimized and comprehensive pediatric TBI technique. Methods and Materials: Through the use of incident learning, safety-critical areas were identified in our procedure for total body irradiation (TBI) for pediatric patients under anesthesia for bone-marrow transplant. The previous procedure lacked flexibility to accommodate various requests from the anesthesia team due to the wide range of patient sizes. To address this issue and to improve the process overall, we updated our procedure for TBI simulation, dosimetry planning, patient setup during treatment, and in vivo dosimetry. A simulation form was redesigned with additional detailed instructions and documentation requirements. The dose calculation procedure was reformulated to remove dependence on setup variations. Tissue compensation determination and therefore dose uniformity were improved by introducing rigorous calculation methods. Calculations were performed on 28 previously-treated patients to compare the dose uniformity using the new versus previous methods. Results: The new procedures improve interdepartmental communication, simplify the workflow, decrease the risk of treating patients in a setup that differs from that used during the simulation, and reduce dose heterogeneity. The new compensator design significantly improved patient dose uniformity: 0.8% ± 0.4% (new method) vs. 4.2% ± 2.3% (previous method) (p Conclusion: A near-miss incident reporting system was used to improve the safety and quality of pediatric TBI procedures under anesthesia.