Background: The robustness is a measurement of an analytical chemical method and its ability to contain unaffected by little with deliberate variation of analytical chemical method parameters. The analytical chemical ...Background: The robustness is a measurement of an analytical chemical method and its ability to contain unaffected by little with deliberate variation of analytical chemical method parameters. The analytical chemical method variation parameters are based on pH variability of buffer solution of mobile phase, organic ratio composition changes, stationary phase (column) manufacture, brand name and lot number variation;flow rate variation and temperature variation of chromatographic system. The analytical chemical method for assay of Atropine Sulfate conducted for robustness evaluation. The typical variation considered for mobile phase organic ratio change, change of pH, change of temperature, change of flow rate, change of column etc. Purpose: The aim of this study is to develop a cost effective, short run time and robust analytical chemical method for the assay quantification of Atropine in Pharmaceutical Ophthalmic Solution. This will help to make analytical decisions quickly for research and development scientists as well as will help with quality control product release for patient consumption. This analytical method will help to meet the market demand through quick quality control test of Atropine Ophthalmic Solution and it is very easy for maintaining (GDP) good documentation practices within the shortest period of time. Method: HPLC method has been selected for developing superior method to Compendial method. Both the compendial HPLC method and developed HPLC method was run into the same HPLC system to prove the superiority of developed method. Sensitivity, precision, reproducibility, accuracy parameters were considered for superiority of method. Mobile phase ratio change, pH of buffer solution, change of stationary phase temperature, change of flow rate and change of column were taken into consideration for robustness study of the developed method. Results: The limit of quantitation (LOQ) of developed method was much low than the compendial method. The % RSD for the six sample assay of developed method was 0.4% where the % RSD of the compendial method was 1.2%. The reproducibility between two analysts was 100.4% for developed method on the contrary the compendial method was 98.4%.展开更多
In Bangladesh, there are thousands of textile-dying industries spread across the country’s many regions, the majority of which involve knitting and dying. The dyeing industry uses an enormous quantity of water, as we...In Bangladesh, there are thousands of textile-dying industries spread across the country’s many regions, the majority of which involve knitting and dying. The dyeing industry uses an enormous quantity of water, as well as colors and chemicals. After the dying process has been completed, they also release a significant amount of wastewater. Cotton, wool, and polyester fiber are typically dyed with textile dyes such as reactive, acid, and disperse dyes. These dyes are utilized most frequently in the respective sectors. The dyes’ colorants are extremely poisonous and dangerous to all forms of life, including aquatic life and living things. The present work has been intended to investigate whether or not it is practicable to remove commonly used textile dyes simultaneously from an aqueous dye solution using an adsorption technique that makes use of a variety of different adsorbents. This study focuses on the removal of color from two distinct types of dyes—Methylene Blue and Reactive Blue-250 which are cationic and anionic in nature respectively, using two different types of activated carbon adsorbents prepared from sawdust and fish scale. Dye removal capacity was tested as a function of contact time, the dosage of the adsorbent, pH during the treatment process, temperature and initial concentration of dye. The applicability of the Langmuir and Freundlich adsorption isotherms in describing experimental data was investigated. The micro and mesoporous activated carbon prepared from sawdust and fish scale identified by Scanning Electron Microscopy (SEM) images indicated that such adsorbents with a large surface area have more dye adsorption potential whereas the variation in dye adsorption occurs due to variation in surface area. From the overall experimental data, maximum removal of 95.39% and 87.92% was found for Methylene Blue and Reactive Blue-250 respectively by sawdust, and 90.64% removal of Methylene Blue by using fish scale.展开更多
Traditional wastewater mostly contains pharmaceutical ingredients. Therefore, the wastewater must be completely free from antibiotics before its release into the environment. In the present study, photocatalytic degra...Traditional wastewater mostly contains pharmaceutical ingredients. Therefore, the wastewater must be completely free from antibiotics before its release into the environment. In the present study, photocatalytic degradation was done to investigate the removal efficiency of Oxytetracycline Dihydrate (OTC) using ZnO, ZnO/3%BaTiO<sub>3</sub> (3 BZ), ZnO/18%BaTiO<sub>3</sub> (18 BZ), ZnO/ 33%BaTiO3 (33 BZ) and ZnO/48%BaTiO<sub>3</sub> (48 BZ) under UV light. After the exposure time of 420 min, about 99.57% and 97.87% of OTC was degraded using ZnO and 3 BZ respectively. Further, increasing the amount of BaTiO<sub>3</sub> in ZnO prolongs the degradation time. Therefore, faster efficiency was found using ZnO nanoparticles. The observed reaction rate constant using ZnO was 0.00933 min<sup>-1</sup> which decreased to 0.00532 min<sup>-1</sup> using 48 BZ, indicating the decrease of reaction rate for increasing the amount of BaTiO<sub>3</sub>. Hence, the use of ZnO photocatalyst is anticipated to be a promising technique for the photocatalytic degradation of contaminated wastewater with oxytetracycline antibiotics using UV light.展开更多
A total of 37 elements were determined in tap and bottled water samples from six counties of Middle Tennessee (USA) by Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES). The overarching goal of the st...A total of 37 elements were determined in tap and bottled water samples from six counties of Middle Tennessee (USA) by Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES). The overarching goal of the study is to dispel the myth that bottled water is better than tap water or vice versa. Other parameters analyzed were pH, conductivity, and Total Dissolved Solids (TDS). The results were compared with the Maximum Contaminant Limit (MCL) reported by the US Environmental Protection Agency (US-EPA). The concentrations of phosphorus, silicon, fluoride, and chloride conformed to the established values by US-EPA maximum contaminant level corresponding value. The level of Aluminum (Al), Boron (B), Chromium (Cr), Cobalt (Co), Copper (Cu), Iron (Fe), Lithium (Li), Manganese (Mn), Nickel (Ni), Titanium (Ti), Vanadium (V), and Zinc (Zn) conformed to the established values by governmental agencies (USEPA). Heavy metals such as Arsenic (As), Cadmium (Cd), Cobalt (Co), Lead (Pb), Mercury (Hg), and Silver (Ag) were detected in the tap water of the urban (Davidson) and urbanizing (Rutherford and Williamson) counties;suggesting that rural counties had a less heavy metal concentration in their drinking water sources than urban counties (P < 0.05). However, the values were below the Maximum Contaminant Levels (MCLs).展开更多
This paper concentrates on the development of glasses with self-cleaning surfaces exhibiting high water contact angles. In this study, we prepared super-hydrophobic nano-ceramic coated glass based on titania & sil...This paper concentrates on the development of glasses with self-cleaning surfaces exhibiting high water contact angles. In this study, we prepared super-hydrophobic nano-ceramic coated glass based on titania & silica using simple sol-gel & dip coating methods and studied the best composition of the coatings by altering ratios of titanium tetraisopropoxide (TTIP)/tetraethyl orthosilicate (TEOS) with different homogenizing agents. We characterized the coatings by surface roughness measurement, percentage of optical transmission, static contact angle, near-infrared (NIR) transmission, and diffuse reflectance. The fabrication of coatings on glass substrates played an important role in increasing the water contact angle of about 95° and visible & NIR transmission of about 90%. We compared our modified glass substrate with commercial low emissivity (Low E) glass using X-ray diffraction (XRD) analysis, which showed pure amorphous surface claiming excellent wettability and thus the prepared glass substrate could have a variety of applications in different fields.展开更多
A significant amount of aluminum dross is available as a waste in foundry industries in Bangladesh. In this study, alumina was ex- tracted from aluminum dross collected from two foundry industries situated in Dhamrai ...A significant amount of aluminum dross is available as a waste in foundry industries in Bangladesh. In this study, alumina was ex- tracted from aluminum dross collected from two foundry industries situated in Dhamrai and Manikgang, near the capital city, Dhaka. Alu- minum dross samples were found to approximately contain 75wt% A1203 and 12wt% SIO2. An acid dissolution process was used to recover the alumina value from the dross. The effects of various parameters, e.g., temperature, acid concentration, and leaching time, on the extrac- tion of alumina were studied to optimize the dissolution process. First, AI(OH)3 was produced in the form of a gel. Calcination of the AI(OH)3 gel at 1000℃, 1200℃, and 1400℃ for 2 h produced O-AlcOa, (t~+O)-A1203, and u-alumina powder, respectively. Thermal charac- terization of the AI(OH)3 gel was performed by thermogravimetric/differential thermal analysis (TG/DTA) and differential scanning calo- rimetry (DSC). The phases and crystallite size of the alumina were determined by X-ray diffraction analysis. The dimensions of the alumina were found to be on the nano level. The chemical compositions of the aluminum dross and alumina were determined by X-ray fluorescence (XRF) spectroscopy. The microstructure and morphology of the alumina were studied with scanning electron microscopy. The purity of the alumina extracted in this study was found to be 99.0%. Thus, it is expected that the obtained alumina powders can be potentially utilized as biomaterials.展开更多
A poly( tert -butyl methacrylate)(PBMA) macromonomer was synthesized by anionic polymerization with bis(2,6-di- t -butyl phenoxy) methyl aluminum [MeAl(ODBP)2] as the initiator and trimethylsilylmethacrylate(...A poly( tert -butyl methacrylate)(PBMA) macromonomer was synthesized by anionic polymerization with bis(2,6-di- t -butyl phenoxy) methyl aluminum [MeAl(ODBP)2] as the initiator and trimethylsilylmethacrylate(TMSMA) as the end capping agent in dry THF. Then, a poly(methacrylic acid)(PMAA) macromonomer was obtained by means of hydrolysis reaction from the PBMA macromonomer in the presence of hydrochloric acid. The structures of the PBMA macromonomer were characterized by using 1H NMR. It was found that the resulted PBMA macromonomer has highly isotactic properties and the PMAA macromonomer has an end vinyl group on per polymer chain. The monodisperse polymeric microspheres, which consisted of polystyrene cores and PMAA branches on their surfaces, were prepared by the dispersion copolymerization of styrene with the PMAA macromonomer in an ethanol/water mixed solvent. It was found that the concentration of the PMAA macromonomer would affect the microsphere formation, the morphology and its size in the copolymerization system.展开更多
To estimate the monthly averaged solar radiations (global, diffuse and direct solar radiation) on horizontal surface and tilted surface over 10 stations (districts) in Bangladesh, thirty years monthly averaged data of...To estimate the monthly averaged solar radiations (global, diffuse and direct solar radiation) on horizontal surface and tilted surface over 10 stations (districts) in Bangladesh, thirty years monthly averaged data of various meteorological parameters namely the monthly averaged value of maximum temperature, minimum temperature, humidity and sunshine hours were used in this study. Assessment of the solar resources for the solar based renewable energy technologies of Bangladesh may be based upon this kind of measured data analyzed study. This study tried to estimate the monthly averaged solar radiation by presenting data in table and graph and finally analyze through equations and descriptions. Correlation between the measurements of monthly averaged solar radiation and the meteorological parameters was given for the selected 10 stations in Bangladesh. In conclusion, we tried to make a comparison among solar radiation on horizontal surface, fixed 20.83<sup> ° </sup> (degree) optimal tilt angle and variable optimal tilt surface at Dhaka station.展开更多
Zirconia toughened alumina (ZTA) ceramics are very promising materials for structural and biomedical applications due to their high hardness, fracture toughness, strength, corrosion and abrasion resistance and excelle...Zirconia toughened alumina (ZTA) ceramics are very promising materials for structural and biomedical applications due to their high hardness, fracture toughness, strength, corrosion and abrasion resistance and excellent biocompatibility. The effect of unstabilized ZrO<sub>2</sub> on the density, fracture toughness, microhardness, flexural strength and microstructure of some Zirconia-toughened alumina (ZTA) samples was investigated in this work. The volume percentage of unstabilized ZrO<sub>2</sub> was varied from 0% - 20% whereas sintering time and sintering temperature were kept constant at 2 hours and 1580°C. The samples were fabricated from nanometer-sized (<em>α</em>-Al<sub>2</sub>O<sub>3</sub>: 150 nm, monoclinic ZrO<sub>2</sub>: 30 - 60 nm) powder raw materials by the conventional mechanical mixing process. Using a small amount of sintering aid (0.2 wt% MgO) almost 99.2% of theoretical density, 8.54 MPam<sup>?</sup> fracture toughness, 17.35 GPa Vickers microhardness and 495.67 MPa flexural strength were found. It was observed that the maximum flexural strength and fracture toughness was obtained for 10 vol% monoclinic ZrO<sub>2</sub> but maximum Vickers microhardness was achieved for 5 vol% ZrO<sub>2</sub> although the maximum density was found for 20 vol% ZrO<sub>2</sub>. It is assumed that this was happened due to addition of denser component, phase transformation of monoclinic ZrO<sub>2</sub> and the changes of grain size of α-Al<sub>2</sub>O<sub>3</sub> and ZrO<sub>2</sub>.展开更多
Water electrolysis is considered as the most capable and old technology for <span style="font-family:Verdana;">hydrogen fuel preparation. Electrolysis needs external electrical energy through </span...Water electrolysis is considered as the most capable and old technology for <span style="font-family:Verdana;">hydrogen fuel preparation. Electrolysis needs external electrical energy through </span><span style="font-family:Verdana;">electrodes to split water into hydrogen and oxygen. An efficient electrolysis requires suitable electrodes to minimize potential drop. In this study Aluminium and Copper Coated Aluminium were used as different combination of Anodes and Cathodes to find out more efficient electrodes combination. NaCl solution in rain water was taken as electrolyte. Rain water was taken to avoid ionic impedance of tap water and expenses of distilled water. In this study, the most efficient electrode combination was Copper Coated Aluminium (anode)</span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">-</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">Aluminium (cathode) and gave the highest efficiency of hydrogen production to about 11% at normal temperature for very low concentration of NaCl (0.051</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">M) which increased with temperature, up to 29% upon rising of temp to 60<span style="font-family:Verdana, Helvetica, Arial;white-space:normal;background-color:#FFFFFF;">°</span></span></span></span><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;">C. It was showed that higher concentration of electrolyte would surge the efficiency significantly. If the supplied heat could be provided from any waste heat sources then this study would be more efficient. However, current research evaluated the technical feasibility of this electrode combination for producing hydrogen with electrolysis of rain water utilizing electricity and modified electrodes.</span></span></span></span>展开更多
A very simple, ultra-sensitive, highly selective and non-extractive new spectrofluorimetric method for the determination of arsenic at pico-trace levels using 2-(α-pyridyl)-thioquinaldinamide (PTQA) has been develope...A very simple, ultra-sensitive, highly selective and non-extractive new spectrofluorimetric method for the determination of arsenic at pico-trace levels using 2-(α-pyridyl)-thioquinaldinamide (PTQA) has been developed. PTQA has been proposed as a new analytical reagent for the direct non-extractive spectrofluorimetric determination of Arsenic (V). This novel fluorimetric reagent, PTQA becomes oxidized in a slightly acidic (0.025 - 0.1 M H2SO4) solution with Arsenic (V) in absolute ethanol to produce highly fluorescent oxidized product (λex = 303 nm;λem = 365 nm). Constant and maximum fluorescence intensities were observed over a wide range of acidity (0.025 - 0.1 M H2SO4) for the period between 2 min and 24 h. Linear calibration graphs were obtained for 0.001 - 800-μgL-1 of As, having a detection limit of 0.1-ngL-1;the quantification limit of the reaction system was found to be 1-ngL-1 and the RSD was 0% - 2%. A large excess of over 60 cations, anions and complexion agents (like, chloride, phosphate, azide, tartrate, oxalate, SCN, etc.) do not interfere in the determination. The developed method was successfully used in the determination of arsenic in several Certified Reference Materials (alloys, steels, ores, human urine, hair, nails, bovine liver and sediments) as well as in some biological fluids (human blood, urine, hair, nail and milk), soil samples, food samples (vegetables, fruits, rice, corn and wheat), solutions containing both arsenic (III) and arsenic (V) speciation and complex synthetic mixtures. The results of the proposed method for assessing biological, food and soil samples were comparable with both ICP-OES & AHG-AAS and were found to be in excellent agreement.展开更多
In order to explore new application opportunities of Barium Strontium Titanate (BST) ceramic composite by modifying the conventional ferroelectric properties of BST through La<sub>2</sub>O<sub>3</...In order to explore new application opportunities of Barium Strontium Titanate (BST) ceramic composite by modifying the conventional ferroelectric properties of BST through La<sub>2</sub>O<sub>3</sub> doping in BST matrix sintered at different temperature was investigated in this current study. Unadulterated Ba<sub>0.3</sub>Sr<sub>0.7</sub>TiO<sub>3</sub> (BST) matrix was prepared from BaTiO<sub>3</sub> (99.95%) and SrTiO<sub>3</sub> (99.95%) taken in stoichiometric extents which later doped by La<sub>2</sub>O<sub>3</sub> (99.99%) in varying extents (0.05 g, 0.10 g and 0.15 g) exploiting solid state reaction route. Doping caused drag effect for the penetration of impurities and sintering temperature helped the impurities migration to BST. Dielectric constant gets lower with rising of frequency, as electrons do not get enough time to polarize at high frequency. Dielectric constant and conductance are found maximum for the sample (0.1 g La<sub>2</sub>O<sub>3</sub> doped BST) sintered at 1460<span style="white-space:nowrap;">°</span>C and reverse is found in impedance analysis. These electrical properties showed visible frequency dependent response irrespective of sintering temperature and doping.展开更多
Aluminum wire mat reinforced polyester composite has been studied as an al-ternative structural material. The physical and mechanical properties of the composite such as tensile strength, flexural strength, water abso...Aluminum wire mat reinforced polyester composite has been studied as an al-ternative structural material. The physical and mechanical properties of the composite such as tensile strength, flexural strength, water absorption, hardness illustrated the competency of the developed composite. It was found that per-cent water absorption is very low for the resultant studied composite. However, water absorption increased very slowly when metal mat layers were increased. Furthermore, mechanical strength of the composite was increased as mechanical properties: tensile strength, flexural strength, hardness and stiffness of this composite increased with the increase in the number of metal mat layer in the composite. This study suggested the use of this composite as an unbeaten al-ternative structural material to conventional materials.展开更多
Counterfeit and substandard drugs possess serious health risks. Regular quality screening is very important to ensure the standard and efficacy of pharmaceutical products. The study aimed to compare the quality of aml...Counterfeit and substandard drugs possess serious health risks. Regular quality screening is very important to ensure the standard and efficacy of pharmaceutical products. The study aimed to compare the quality of amlodipine besylate tablets available in the Bangladesh drug market and examine their physical and pharmaceutical equivalence. The various physico-chemical parameters such as diameter, shape, size, weight variation, thickness, hardness, loss on drying (LOD), friability, disintegration, dissolution, and assay have been determined according to the methods mentioned in the United States Pharmacopoeia (USP) and British Pharmacopoeia (BP). Four brands of amlodipine besylate were purchased from different local retail stores and coded as ALT<sub>1</sub>, AMT<sub>2</sub>, AMT<sub>3</sub>, and AST<sub>4</sub> on the basis of their market share. All four brands met official USP specifications. Pharmaceutical equivalence was determined from the dissolution profile which gives acceptable difference (f<sub>1</sub>) and similarity (f<sub>2</sub>) factor values for all the brands compared with the benchmark brand for its highest market share. All the brands also met the USP criteria for assay of not less than 90.0% and not more than 110.0% of the labeled amount of amlodipine (C<sub>20</sub>H<sub>25</sub>N<sub>2</sub>O<sub>5</sub>Cl).展开更多
Short jute fiber (2 - 3 mm) reinforced polypropylene PP-based composites (20% fiber by weight) were fabricated using compression molding and the mechanical properties were evaluated. Tensile strength (TS), tensile mod...Short jute fiber (2 - 3 mm) reinforced polypropylene PP-based composites (20% fiber by weight) were fabricated using compression molding and the mechanical properties were evaluated. Tensile strength (TS), tensile modulus (TM), elongation at break (Eb%), flexural strength (FS), flexural modulus (FM), impact strength (IS), and hardness of the composites were found to be 32 MPa, 850 MPa, 12%, 38 MPa, 1685 MPa, 18 kJ/m2 and 96 shore-A, respectively. Then short E-glass fiber (2 - 3 mm) reinforced PP-based composites (20% fiber by weight) were fabricated and mechanical properties were compared with short jute-based composites. Short jute-based composites showed excellent mechanical properties and comparable to short E-glass-based composites. Soil degradation test of both types of composites indi-cated that jute/PP composites significantly lost much of its mechanical properties but E-glass/PP composites retained major portion of its original integrity. Interfaces of the degraded composites were investigated by scanning electron microscopy and supported the biodegradation properties of jute/PP composites.展开更多
A new spectrofluorimetric reagent 2-(α-pyridyl)-thioquinaldinamide (PTQA) has been synthesized and characterized through novel reaction techniques. A very simple, ultra-sensitive and highly selective non-extractive n...A new spectrofluorimetric reagent 2-(α-pyridyl)-thioquinaldinamide (PTQA) has been synthesized and characterized through novel reaction techniques. A very simple, ultra-sensitive and highly selective non-extractive new spectrofluorimetric method for the determination of vanadium at Pico-trace levels using 2-(α-pyridyl)-thioquinaldinamide (PTQA) has been developed. PTQA has been proposed as a new analytical reagent for the direct non-extractive spectrofluorimetric determination of vanadium (V). This novel fluorimetric reagent, PTQA becomes oxidized in a slightly acidic (0.0035 - 0.0085 M H2SO4) solution within vanadium (V) in 20% ethanol to produce highly fluorescent oxidized product (λex = 319 nm;λem = 371 nm). Constant and maximum fluorescence intensities were observed over a wide range of acidity (0.0035 - 0.0085 M H2SO4) for the period between 5 min and 24 h. Linear calibration graphs were obtained for 0.001 - 600-μg·L-1 of V, having a detection limit of 0.3-ng·L-1;the quantification limit of the reaction system was found to be 3-ng·L-1 and the RSD was 0% - 2%. A large excess of over 60 cations, anions and complexing agents (like, chloride, phosphate, azide, tartrate, oxalate, SCN- etc.) do not interfere in the determination. The developed method was successfully used in the determination of vanadium in several Certified Reference Materials (alloys, steels, serum, bovine liver, drinking water, soil and sediments) as well as in some environmental waters (potable and polluted), biological fluids (human blood, urine, hair and milk), soil samples and food samples (vegetables, rice and wheat) solutions containing both vanadium (IV) and vanadium (V) speciation and complex synthetic mixtures. The results of the proposed method for assessing biological, food and vegetable samples were comparable with inductively coupled plasma optical emission spectroscopy (ICP-OES) and atomic-absorption spectrophotometer (AAS) was found to be in excellent agreement.展开更多
This study was carried out to prepare ZnO nanoparticles incorporated acrylamide grafted chitosan composite film for possible biomedical application especially drug loading in wound healing. ZnO nanoparticles were prep...This study was carried out to prepare ZnO nanoparticles incorporated acrylamide grafted chitosan composite film for possible biomedical application especially drug loading in wound healing. ZnO nanoparticles were prepared by co-precipitation method from zinc acetate di-hydrate and incorporated in acrylamide grafted chitosan. FT-IR and TGA of the prepared composite film confirmed the successful incorporation of ZnO nanoparticles in the acrylamide-grafted polymer matrix. SEM images showed that the ZnO nanoparticles were homogeneously distributed on the porous matrix of the composite film. Water uptake and buffer uptake analysis revealed that the composite film could hold water and buffer sufficiently, which facilitated the absorption of exudate from the wound site. Amoxicillin was loaded in the prepared composite film and the maximum loading efficiency was found to be 67.33% with drug concentration of 300 ppm. In vitro studies showed greater antimicrobial activity of drug-loaded composite film compared to both pure film and standard antibiotic disc. Finally, the In vivo mouse model showed maximum healing efficiency compared to conventional gauge bandages because the loading of antibiotic in the film produced a synergistic effect and healing time was reduced.展开更多
Objective:To evaluate the anticancer activity of vanillin semicarbazone(VSC) against Ehrlich ascites carcinoma(EAC) cells in Swiss albino mice.Methods:The compound VSC at three doses(5, 7.5 and 10 mg/kg i.p.) was admi...Objective:To evaluate the anticancer activity of vanillin semicarbazone(VSC) against Ehrlich ascites carcinoma(EAC) cells in Swiss albino mice.Methods:The compound VSC at three doses(5, 7.5 and 10 mg/kg i.p.) was administered into the intraperitoneal cavity of the EAC inoculated mice to observe its efficiency by studying the cell growth inhibition, reduction of tumour weight,enhancement of survival time as well as the changes in depleted hematological parameters. Allsuch parameters were also studied with a known standard drug bleomycin at the dose of 0.3 mg/kg(i.p.).Results:Among the doses studied, 10 mg/kg(i.p.) was found to be quite comparable in potency to that of bleomycin at the dose of 0.3 mg/kg(i.p.). The host toxic effects of VSC was found to be negligible.Conclusions:It can be concluded that VSC can therefore be considered as potent anticancer agent.展开更多
Objective:To evaluate the antineoplastic activity of Eucalyptus extract(EUE) against Ehrlich ascites carcinoma(EAC)in Swiss albino mice.Methods:Preliminary examination of four plant extracts(namely Eucalyptus,Costus,A...Objective:To evaluate the antineoplastic activity of Eucalyptus extract(EUE) against Ehrlich ascites carcinoma(EAC)in Swiss albino mice.Methods:Preliminary examination of four plant extracts(namely Eucalyptus,Costus,Azadirachla.Feroniai has been done by observing the reduction ability of number of EAC cells in previously inoculated Swiss alliino mice.Among them as EuE showed maximum capability,the whole study has been conducted with EuE only. Important parameters viz.enhancement of life span,reduction of average tumor weight etc.have been studied.In addition the effects of EuE on hematological parameters in both normal and EAC inoculated mice have been measured.Effect of EuE on normal peritoneal cells has also been studied.Results:EuE reduced tumor burden remarkably.It reduced the tumor growth rate and enhanced the life span of EAC bearing mice noticeably.It reversed back the hematological parameters towards normal,reduced the Irasplanlability of EAC cells and enhanced the immunomodulatory effects in mice.The host toxic effect of EuE in mice is minimum and mostly reversible with time.All such data have been compared with those obtained by running parallel experiments with bleomycin at dose 0.3 mg/kg(i.p.).Conclusions:The Eucalyptus extract may be considered as a potent anticancer agent for advanced researches.展开更多
Jute is generally not dyed with reactive dye though it is a cellulosic fiber. Reactive dye is extensively used to dye cotton, viscose and other cellulosic fibers whereas jute is dyed with basic dye. This paper present...Jute is generally not dyed with reactive dye though it is a cellulosic fiber. Reactive dye is extensively used to dye cotton, viscose and other cellulosic fibers whereas jute is dyed with basic dye. This paper presents a novel approach to dye the jute fiber with reactive dye after treating with chitosan. Jute fabric was treated with chitosan solution at different con- centrations (0.5%, 1%, 2%, 3% and 4%) and then dyed with reactive dye. The depth and fastness of shade of dyed fabric were analyzed by comparing the chitosan treated samples with untreated dyed fabric samples. It has been found that, the dyebath exhaustion is increased with the increment of chitosan concentrations. The exhaustion percentages have found 36.79%, 41.59%, 48.33%, 54.46% and 58.75% for the fabric treated with 0.5%, 1%, 2%, 3% and 4% chitosan solution respectively, while the exhaustion of dyebath is only 23.15% for untreated fabric. The K/S values (at λmax = 540 nm) of dyed samples have found 4.93, 6.77, 10.5, 14.07, 15.57 and 2.37 for 0.5%, 1%, 2%, 3%, 4% and untreated fabric respectively. The color fastness to washing and rubbing of the dyed fabrics was also evaluated. In case of dry rubbing, both types of fabric have shown almost similar fastness ratings. However, chitosan treated fabrics have shown inferior fastness rating in case of wet rubbing and washing, particularly for the fabrics at higher chitosan concentrations.展开更多
文摘Background: The robustness is a measurement of an analytical chemical method and its ability to contain unaffected by little with deliberate variation of analytical chemical method parameters. The analytical chemical method variation parameters are based on pH variability of buffer solution of mobile phase, organic ratio composition changes, stationary phase (column) manufacture, brand name and lot number variation;flow rate variation and temperature variation of chromatographic system. The analytical chemical method for assay of Atropine Sulfate conducted for robustness evaluation. The typical variation considered for mobile phase organic ratio change, change of pH, change of temperature, change of flow rate, change of column etc. Purpose: The aim of this study is to develop a cost effective, short run time and robust analytical chemical method for the assay quantification of Atropine in Pharmaceutical Ophthalmic Solution. This will help to make analytical decisions quickly for research and development scientists as well as will help with quality control product release for patient consumption. This analytical method will help to meet the market demand through quick quality control test of Atropine Ophthalmic Solution and it is very easy for maintaining (GDP) good documentation practices within the shortest period of time. Method: HPLC method has been selected for developing superior method to Compendial method. Both the compendial HPLC method and developed HPLC method was run into the same HPLC system to prove the superiority of developed method. Sensitivity, precision, reproducibility, accuracy parameters were considered for superiority of method. Mobile phase ratio change, pH of buffer solution, change of stationary phase temperature, change of flow rate and change of column were taken into consideration for robustness study of the developed method. Results: The limit of quantitation (LOQ) of developed method was much low than the compendial method. The % RSD for the six sample assay of developed method was 0.4% where the % RSD of the compendial method was 1.2%. The reproducibility between two analysts was 100.4% for developed method on the contrary the compendial method was 98.4%.
文摘In Bangladesh, there are thousands of textile-dying industries spread across the country’s many regions, the majority of which involve knitting and dying. The dyeing industry uses an enormous quantity of water, as well as colors and chemicals. After the dying process has been completed, they also release a significant amount of wastewater. Cotton, wool, and polyester fiber are typically dyed with textile dyes such as reactive, acid, and disperse dyes. These dyes are utilized most frequently in the respective sectors. The dyes’ colorants are extremely poisonous and dangerous to all forms of life, including aquatic life and living things. The present work has been intended to investigate whether or not it is practicable to remove commonly used textile dyes simultaneously from an aqueous dye solution using an adsorption technique that makes use of a variety of different adsorbents. This study focuses on the removal of color from two distinct types of dyes—Methylene Blue and Reactive Blue-250 which are cationic and anionic in nature respectively, using two different types of activated carbon adsorbents prepared from sawdust and fish scale. Dye removal capacity was tested as a function of contact time, the dosage of the adsorbent, pH during the treatment process, temperature and initial concentration of dye. The applicability of the Langmuir and Freundlich adsorption isotherms in describing experimental data was investigated. The micro and mesoporous activated carbon prepared from sawdust and fish scale identified by Scanning Electron Microscopy (SEM) images indicated that such adsorbents with a large surface area have more dye adsorption potential whereas the variation in dye adsorption occurs due to variation in surface area. From the overall experimental data, maximum removal of 95.39% and 87.92% was found for Methylene Blue and Reactive Blue-250 respectively by sawdust, and 90.64% removal of Methylene Blue by using fish scale.
文摘Traditional wastewater mostly contains pharmaceutical ingredients. Therefore, the wastewater must be completely free from antibiotics before its release into the environment. In the present study, photocatalytic degradation was done to investigate the removal efficiency of Oxytetracycline Dihydrate (OTC) using ZnO, ZnO/3%BaTiO<sub>3</sub> (3 BZ), ZnO/18%BaTiO<sub>3</sub> (18 BZ), ZnO/ 33%BaTiO3 (33 BZ) and ZnO/48%BaTiO<sub>3</sub> (48 BZ) under UV light. After the exposure time of 420 min, about 99.57% and 97.87% of OTC was degraded using ZnO and 3 BZ respectively. Further, increasing the amount of BaTiO<sub>3</sub> in ZnO prolongs the degradation time. Therefore, faster efficiency was found using ZnO nanoparticles. The observed reaction rate constant using ZnO was 0.00933 min<sup>-1</sup> which decreased to 0.00532 min<sup>-1</sup> using 48 BZ, indicating the decrease of reaction rate for increasing the amount of BaTiO<sub>3</sub>. Hence, the use of ZnO photocatalyst is anticipated to be a promising technique for the photocatalytic degradation of contaminated wastewater with oxytetracycline antibiotics using UV light.
文摘A total of 37 elements were determined in tap and bottled water samples from six counties of Middle Tennessee (USA) by Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES). The overarching goal of the study is to dispel the myth that bottled water is better than tap water or vice versa. Other parameters analyzed were pH, conductivity, and Total Dissolved Solids (TDS). The results were compared with the Maximum Contaminant Limit (MCL) reported by the US Environmental Protection Agency (US-EPA). The concentrations of phosphorus, silicon, fluoride, and chloride conformed to the established values by US-EPA maximum contaminant level corresponding value. The level of Aluminum (Al), Boron (B), Chromium (Cr), Cobalt (Co), Copper (Cu), Iron (Fe), Lithium (Li), Manganese (Mn), Nickel (Ni), Titanium (Ti), Vanadium (V), and Zinc (Zn) conformed to the established values by governmental agencies (USEPA). Heavy metals such as Arsenic (As), Cadmium (Cd), Cobalt (Co), Lead (Pb), Mercury (Hg), and Silver (Ag) were detected in the tap water of the urban (Davidson) and urbanizing (Rutherford and Williamson) counties;suggesting that rural counties had a less heavy metal concentration in their drinking water sources than urban counties (P < 0.05). However, the values were below the Maximum Contaminant Levels (MCLs).
文摘This paper concentrates on the development of glasses with self-cleaning surfaces exhibiting high water contact angles. In this study, we prepared super-hydrophobic nano-ceramic coated glass based on titania & silica using simple sol-gel & dip coating methods and studied the best composition of the coatings by altering ratios of titanium tetraisopropoxide (TTIP)/tetraethyl orthosilicate (TEOS) with different homogenizing agents. We characterized the coatings by surface roughness measurement, percentage of optical transmission, static contact angle, near-infrared (NIR) transmission, and diffuse reflectance. The fabrication of coatings on glass substrates played an important role in increasing the water contact angle of about 95° and visible & NIR transmission of about 90%. We compared our modified glass substrate with commercial low emissivity (Low E) glass using X-ray diffraction (XRD) analysis, which showed pure amorphous surface claiming excellent wettability and thus the prepared glass substrate could have a variety of applications in different fields.
文摘A significant amount of aluminum dross is available as a waste in foundry industries in Bangladesh. In this study, alumina was ex- tracted from aluminum dross collected from two foundry industries situated in Dhamrai and Manikgang, near the capital city, Dhaka. Alu- minum dross samples were found to approximately contain 75wt% A1203 and 12wt% SIO2. An acid dissolution process was used to recover the alumina value from the dross. The effects of various parameters, e.g., temperature, acid concentration, and leaching time, on the extrac- tion of alumina were studied to optimize the dissolution process. First, AI(OH)3 was produced in the form of a gel. Calcination of the AI(OH)3 gel at 1000℃, 1200℃, and 1400℃ for 2 h produced O-AlcOa, (t~+O)-A1203, and u-alumina powder, respectively. Thermal charac- terization of the AI(OH)3 gel was performed by thermogravimetric/differential thermal analysis (TG/DTA) and differential scanning calo- rimetry (DSC). The phases and crystallite size of the alumina were determined by X-ray diffraction analysis. The dimensions of the alumina were found to be on the nano level. The chemical compositions of the aluminum dross and alumina were determined by X-ray fluorescence (XRF) spectroscopy. The microstructure and morphology of the alumina were studied with scanning electron microscopy. The purity of the alumina extracted in this study was found to be 99.0%. Thus, it is expected that the obtained alumina powders can be potentially utilized as biomaterials.
基金Supported by the Foundation for U niversity Key Teacher by The Ministry of Education,P. R. China and was supported in part by the Grant- in- Aid for Scientific Research on Priority Areas,"New Polym ers and Their Nano- Organized System s"(No.2 77/ 10 5
文摘A poly( tert -butyl methacrylate)(PBMA) macromonomer was synthesized by anionic polymerization with bis(2,6-di- t -butyl phenoxy) methyl aluminum [MeAl(ODBP)2] as the initiator and trimethylsilylmethacrylate(TMSMA) as the end capping agent in dry THF. Then, a poly(methacrylic acid)(PMAA) macromonomer was obtained by means of hydrolysis reaction from the PBMA macromonomer in the presence of hydrochloric acid. The structures of the PBMA macromonomer were characterized by using 1H NMR. It was found that the resulted PBMA macromonomer has highly isotactic properties and the PMAA macromonomer has an end vinyl group on per polymer chain. The monodisperse polymeric microspheres, which consisted of polystyrene cores and PMAA branches on their surfaces, were prepared by the dispersion copolymerization of styrene with the PMAA macromonomer in an ethanol/water mixed solvent. It was found that the concentration of the PMAA macromonomer would affect the microsphere formation, the morphology and its size in the copolymerization system.
文摘To estimate the monthly averaged solar radiations (global, diffuse and direct solar radiation) on horizontal surface and tilted surface over 10 stations (districts) in Bangladesh, thirty years monthly averaged data of various meteorological parameters namely the monthly averaged value of maximum temperature, minimum temperature, humidity and sunshine hours were used in this study. Assessment of the solar resources for the solar based renewable energy technologies of Bangladesh may be based upon this kind of measured data analyzed study. This study tried to estimate the monthly averaged solar radiation by presenting data in table and graph and finally analyze through equations and descriptions. Correlation between the measurements of monthly averaged solar radiation and the meteorological parameters was given for the selected 10 stations in Bangladesh. In conclusion, we tried to make a comparison among solar radiation on horizontal surface, fixed 20.83<sup> ° </sup> (degree) optimal tilt angle and variable optimal tilt surface at Dhaka station.
文摘Zirconia toughened alumina (ZTA) ceramics are very promising materials for structural and biomedical applications due to their high hardness, fracture toughness, strength, corrosion and abrasion resistance and excellent biocompatibility. The effect of unstabilized ZrO<sub>2</sub> on the density, fracture toughness, microhardness, flexural strength and microstructure of some Zirconia-toughened alumina (ZTA) samples was investigated in this work. The volume percentage of unstabilized ZrO<sub>2</sub> was varied from 0% - 20% whereas sintering time and sintering temperature were kept constant at 2 hours and 1580°C. The samples were fabricated from nanometer-sized (<em>α</em>-Al<sub>2</sub>O<sub>3</sub>: 150 nm, monoclinic ZrO<sub>2</sub>: 30 - 60 nm) powder raw materials by the conventional mechanical mixing process. Using a small amount of sintering aid (0.2 wt% MgO) almost 99.2% of theoretical density, 8.54 MPam<sup>?</sup> fracture toughness, 17.35 GPa Vickers microhardness and 495.67 MPa flexural strength were found. It was observed that the maximum flexural strength and fracture toughness was obtained for 10 vol% monoclinic ZrO<sub>2</sub> but maximum Vickers microhardness was achieved for 5 vol% ZrO<sub>2</sub> although the maximum density was found for 20 vol% ZrO<sub>2</sub>. It is assumed that this was happened due to addition of denser component, phase transformation of monoclinic ZrO<sub>2</sub> and the changes of grain size of α-Al<sub>2</sub>O<sub>3</sub> and ZrO<sub>2</sub>.
文摘Water electrolysis is considered as the most capable and old technology for <span style="font-family:Verdana;">hydrogen fuel preparation. Electrolysis needs external electrical energy through </span><span style="font-family:Verdana;">electrodes to split water into hydrogen and oxygen. An efficient electrolysis requires suitable electrodes to minimize potential drop. In this study Aluminium and Copper Coated Aluminium were used as different combination of Anodes and Cathodes to find out more efficient electrodes combination. NaCl solution in rain water was taken as electrolyte. Rain water was taken to avoid ionic impedance of tap water and expenses of distilled water. In this study, the most efficient electrode combination was Copper Coated Aluminium (anode)</span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">-</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">Aluminium (cathode) and gave the highest efficiency of hydrogen production to about 11% at normal temperature for very low concentration of NaCl (0.051</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">M) which increased with temperature, up to 29% upon rising of temp to 60<span style="font-family:Verdana, Helvetica, Arial;white-space:normal;background-color:#FFFFFF;">°</span></span></span></span><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;">C. It was showed that higher concentration of electrolyte would surge the efficiency significantly. If the supplied heat could be provided from any waste heat sources then this study would be more efficient. However, current research evaluated the technical feasibility of this electrode combination for producing hydrogen with electrolysis of rain water utilizing electricity and modified electrodes.</span></span></span></span>
文摘A very simple, ultra-sensitive, highly selective and non-extractive new spectrofluorimetric method for the determination of arsenic at pico-trace levels using 2-(α-pyridyl)-thioquinaldinamide (PTQA) has been developed. PTQA has been proposed as a new analytical reagent for the direct non-extractive spectrofluorimetric determination of Arsenic (V). This novel fluorimetric reagent, PTQA becomes oxidized in a slightly acidic (0.025 - 0.1 M H2SO4) solution with Arsenic (V) in absolute ethanol to produce highly fluorescent oxidized product (λex = 303 nm;λem = 365 nm). Constant and maximum fluorescence intensities were observed over a wide range of acidity (0.025 - 0.1 M H2SO4) for the period between 2 min and 24 h. Linear calibration graphs were obtained for 0.001 - 800-μgL-1 of As, having a detection limit of 0.1-ngL-1;the quantification limit of the reaction system was found to be 1-ngL-1 and the RSD was 0% - 2%. A large excess of over 60 cations, anions and complexion agents (like, chloride, phosphate, azide, tartrate, oxalate, SCN, etc.) do not interfere in the determination. The developed method was successfully used in the determination of arsenic in several Certified Reference Materials (alloys, steels, ores, human urine, hair, nails, bovine liver and sediments) as well as in some biological fluids (human blood, urine, hair, nail and milk), soil samples, food samples (vegetables, fruits, rice, corn and wheat), solutions containing both arsenic (III) and arsenic (V) speciation and complex synthetic mixtures. The results of the proposed method for assessing biological, food and soil samples were comparable with both ICP-OES & AHG-AAS and were found to be in excellent agreement.
文摘In order to explore new application opportunities of Barium Strontium Titanate (BST) ceramic composite by modifying the conventional ferroelectric properties of BST through La<sub>2</sub>O<sub>3</sub> doping in BST matrix sintered at different temperature was investigated in this current study. Unadulterated Ba<sub>0.3</sub>Sr<sub>0.7</sub>TiO<sub>3</sub> (BST) matrix was prepared from BaTiO<sub>3</sub> (99.95%) and SrTiO<sub>3</sub> (99.95%) taken in stoichiometric extents which later doped by La<sub>2</sub>O<sub>3</sub> (99.99%) in varying extents (0.05 g, 0.10 g and 0.15 g) exploiting solid state reaction route. Doping caused drag effect for the penetration of impurities and sintering temperature helped the impurities migration to BST. Dielectric constant gets lower with rising of frequency, as electrons do not get enough time to polarize at high frequency. Dielectric constant and conductance are found maximum for the sample (0.1 g La<sub>2</sub>O<sub>3</sub> doped BST) sintered at 1460<span style="white-space:nowrap;">°</span>C and reverse is found in impedance analysis. These electrical properties showed visible frequency dependent response irrespective of sintering temperature and doping.
文摘Aluminum wire mat reinforced polyester composite has been studied as an al-ternative structural material. The physical and mechanical properties of the composite such as tensile strength, flexural strength, water absorption, hardness illustrated the competency of the developed composite. It was found that per-cent water absorption is very low for the resultant studied composite. However, water absorption increased very slowly when metal mat layers were increased. Furthermore, mechanical strength of the composite was increased as mechanical properties: tensile strength, flexural strength, hardness and stiffness of this composite increased with the increase in the number of metal mat layer in the composite. This study suggested the use of this composite as an unbeaten al-ternative structural material to conventional materials.
文摘Counterfeit and substandard drugs possess serious health risks. Regular quality screening is very important to ensure the standard and efficacy of pharmaceutical products. The study aimed to compare the quality of amlodipine besylate tablets available in the Bangladesh drug market and examine their physical and pharmaceutical equivalence. The various physico-chemical parameters such as diameter, shape, size, weight variation, thickness, hardness, loss on drying (LOD), friability, disintegration, dissolution, and assay have been determined according to the methods mentioned in the United States Pharmacopoeia (USP) and British Pharmacopoeia (BP). Four brands of amlodipine besylate were purchased from different local retail stores and coded as ALT<sub>1</sub>, AMT<sub>2</sub>, AMT<sub>3</sub>, and AST<sub>4</sub> on the basis of their market share. All four brands met official USP specifications. Pharmaceutical equivalence was determined from the dissolution profile which gives acceptable difference (f<sub>1</sub>) and similarity (f<sub>2</sub>) factor values for all the brands compared with the benchmark brand for its highest market share. All the brands also met the USP criteria for assay of not less than 90.0% and not more than 110.0% of the labeled amount of amlodipine (C<sub>20</sub>H<sub>25</sub>N<sub>2</sub>O<sub>5</sub>Cl).
文摘Short jute fiber (2 - 3 mm) reinforced polypropylene PP-based composites (20% fiber by weight) were fabricated using compression molding and the mechanical properties were evaluated. Tensile strength (TS), tensile modulus (TM), elongation at break (Eb%), flexural strength (FS), flexural modulus (FM), impact strength (IS), and hardness of the composites were found to be 32 MPa, 850 MPa, 12%, 38 MPa, 1685 MPa, 18 kJ/m2 and 96 shore-A, respectively. Then short E-glass fiber (2 - 3 mm) reinforced PP-based composites (20% fiber by weight) were fabricated and mechanical properties were compared with short jute-based composites. Short jute-based composites showed excellent mechanical properties and comparable to short E-glass-based composites. Soil degradation test of both types of composites indi-cated that jute/PP composites significantly lost much of its mechanical properties but E-glass/PP composites retained major portion of its original integrity. Interfaces of the degraded composites were investigated by scanning electron microscopy and supported the biodegradation properties of jute/PP composites.
文摘A new spectrofluorimetric reagent 2-(α-pyridyl)-thioquinaldinamide (PTQA) has been synthesized and characterized through novel reaction techniques. A very simple, ultra-sensitive and highly selective non-extractive new spectrofluorimetric method for the determination of vanadium at Pico-trace levels using 2-(α-pyridyl)-thioquinaldinamide (PTQA) has been developed. PTQA has been proposed as a new analytical reagent for the direct non-extractive spectrofluorimetric determination of vanadium (V). This novel fluorimetric reagent, PTQA becomes oxidized in a slightly acidic (0.0035 - 0.0085 M H2SO4) solution within vanadium (V) in 20% ethanol to produce highly fluorescent oxidized product (λex = 319 nm;λem = 371 nm). Constant and maximum fluorescence intensities were observed over a wide range of acidity (0.0035 - 0.0085 M H2SO4) for the period between 5 min and 24 h. Linear calibration graphs were obtained for 0.001 - 600-μg·L-1 of V, having a detection limit of 0.3-ng·L-1;the quantification limit of the reaction system was found to be 3-ng·L-1 and the RSD was 0% - 2%. A large excess of over 60 cations, anions and complexing agents (like, chloride, phosphate, azide, tartrate, oxalate, SCN- etc.) do not interfere in the determination. The developed method was successfully used in the determination of vanadium in several Certified Reference Materials (alloys, steels, serum, bovine liver, drinking water, soil and sediments) as well as in some environmental waters (potable and polluted), biological fluids (human blood, urine, hair and milk), soil samples and food samples (vegetables, rice and wheat) solutions containing both vanadium (IV) and vanadium (V) speciation and complex synthetic mixtures. The results of the proposed method for assessing biological, food and vegetable samples were comparable with inductively coupled plasma optical emission spectroscopy (ICP-OES) and atomic-absorption spectrophotometer (AAS) was found to be in excellent agreement.
文摘This study was carried out to prepare ZnO nanoparticles incorporated acrylamide grafted chitosan composite film for possible biomedical application especially drug loading in wound healing. ZnO nanoparticles were prepared by co-precipitation method from zinc acetate di-hydrate and incorporated in acrylamide grafted chitosan. FT-IR and TGA of the prepared composite film confirmed the successful incorporation of ZnO nanoparticles in the acrylamide-grafted polymer matrix. SEM images showed that the ZnO nanoparticles were homogeneously distributed on the porous matrix of the composite film. Water uptake and buffer uptake analysis revealed that the composite film could hold water and buffer sufficiently, which facilitated the absorption of exudate from the wound site. Amoxicillin was loaded in the prepared composite film and the maximum loading efficiency was found to be 67.33% with drug concentration of 300 ppm. In vitro studies showed greater antimicrobial activity of drug-loaded composite film compared to both pure film and standard antibiotic disc. Finally, the In vivo mouse model showed maximum healing efficiency compared to conventional gauge bandages because the loading of antibiotic in the film produced a synergistic effect and healing time was reduced.
基金financially supported by University Grants Commission of Bangladesh[grant No.6(76)/UGC/BK/Chemistry(9)/2007-2008/3268]
文摘Objective:To evaluate the anticancer activity of vanillin semicarbazone(VSC) against Ehrlich ascites carcinoma(EAC) cells in Swiss albino mice.Methods:The compound VSC at three doses(5, 7.5 and 10 mg/kg i.p.) was administered into the intraperitoneal cavity of the EAC inoculated mice to observe its efficiency by studying the cell growth inhibition, reduction of tumour weight,enhancement of survival time as well as the changes in depleted hematological parameters. Allsuch parameters were also studied with a known standard drug bleomycin at the dose of 0.3 mg/kg(i.p.).Results:Among the doses studied, 10 mg/kg(i.p.) was found to be quite comparable in potency to that of bleomycin at the dose of 0.3 mg/kg(i.p.). The host toxic effects of VSC was found to be negligible.Conclusions:It can be concluded that VSC can therefore be considered as potent anticancer agent.
基金Supported by University Grant Commission,Dhaka,Bangladeshfor JA Khanam(Grant No.(676)UCC/Chemistry/(10)2007-2008/3269)
文摘Objective:To evaluate the antineoplastic activity of Eucalyptus extract(EUE) against Ehrlich ascites carcinoma(EAC)in Swiss albino mice.Methods:Preliminary examination of four plant extracts(namely Eucalyptus,Costus,Azadirachla.Feroniai has been done by observing the reduction ability of number of EAC cells in previously inoculated Swiss alliino mice.Among them as EuE showed maximum capability,the whole study has been conducted with EuE only. Important parameters viz.enhancement of life span,reduction of average tumor weight etc.have been studied.In addition the effects of EuE on hematological parameters in both normal and EAC inoculated mice have been measured.Effect of EuE on normal peritoneal cells has also been studied.Results:EuE reduced tumor burden remarkably.It reduced the tumor growth rate and enhanced the life span of EAC bearing mice noticeably.It reversed back the hematological parameters towards normal,reduced the Irasplanlability of EAC cells and enhanced the immunomodulatory effects in mice.The host toxic effect of EuE in mice is minimum and mostly reversible with time.All such data have been compared with those obtained by running parallel experiments with bleomycin at dose 0.3 mg/kg(i.p.).Conclusions:The Eucalyptus extract may be considered as a potent anticancer agent for advanced researches.
文摘Jute is generally not dyed with reactive dye though it is a cellulosic fiber. Reactive dye is extensively used to dye cotton, viscose and other cellulosic fibers whereas jute is dyed with basic dye. This paper presents a novel approach to dye the jute fiber with reactive dye after treating with chitosan. Jute fabric was treated with chitosan solution at different con- centrations (0.5%, 1%, 2%, 3% and 4%) and then dyed with reactive dye. The depth and fastness of shade of dyed fabric were analyzed by comparing the chitosan treated samples with untreated dyed fabric samples. It has been found that, the dyebath exhaustion is increased with the increment of chitosan concentrations. The exhaustion percentages have found 36.79%, 41.59%, 48.33%, 54.46% and 58.75% for the fabric treated with 0.5%, 1%, 2%, 3% and 4% chitosan solution respectively, while the exhaustion of dyebath is only 23.15% for untreated fabric. The K/S values (at λmax = 540 nm) of dyed samples have found 4.93, 6.77, 10.5, 14.07, 15.57 and 2.37 for 0.5%, 1%, 2%, 3%, 4% and untreated fabric respectively. The color fastness to washing and rubbing of the dyed fabrics was also evaluated. In case of dry rubbing, both types of fabric have shown almost similar fastness ratings. However, chitosan treated fabrics have shown inferior fastness rating in case of wet rubbing and washing, particularly for the fabrics at higher chitosan concentrations.