In this paper,the author studies the existence of the minimal nonnegative solutions of some elliptic variational inequalities in Orlicz-Sobolev spaces on bounded or unbounded domains.She gets some comparison results b...In this paper,the author studies the existence of the minimal nonnegative solutions of some elliptic variational inequalities in Orlicz-Sobolev spaces on bounded or unbounded domains.She gets some comparison results between different solutions as tools to pass to the limit in the problems and to show the existence of the minimal solutions of the variational inequalities on bounded domains or unbounded domains.In both cases,coercive and noncoercive operators are handled.The sufficient and necessary conditions for the existence of the minimal nonnegative solution of the noncoercive variational inequality on bounded domains are established.展开更多
基金supported by the 100 Teachers Database Project of Shanghai University of Medicine and Health Sciences(No.B30200203110084)。
文摘In this paper,the author studies the existence of the minimal nonnegative solutions of some elliptic variational inequalities in Orlicz-Sobolev spaces on bounded or unbounded domains.She gets some comparison results between different solutions as tools to pass to the limit in the problems and to show the existence of the minimal solutions of the variational inequalities on bounded domains or unbounded domains.In both cases,coercive and noncoercive operators are handled.The sufficient and necessary conditions for the existence of the minimal nonnegative solution of the noncoercive variational inequality on bounded domains are established.