期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Effect of deformation temperature on the hot compressive behavior of metal matrix composites with misaligned whiskers
1
作者 LI Aibin MENG Qingyuan +2 位作者 GENG Lin DENG Chunfeng YAN Yiwu 《Rare Metals》 SCIE EI CAS CSCD 2007年第2期182-192,共11页
A multi-inclusion cell model is used to investigate the effect of deformation temperature and whisker rotation on the hot compressive behavior of metal matrix composites with misaligned whiskers. Numerical results sho... A multi-inclusion cell model is used to investigate the effect of deformation temperature and whisker rotation on the hot compressive behavior of metal matrix composites with misaligned whiskers. Numerical results show that deformation temperature influences the work-hardening behavior of the matrix and the rotation behavior of the whiskers. With increasing temperature, the work hardening rate of the matrix decreases, but the whisker rotation angle increases. Both whisker rotation and the increase of deformation temperature can induce reductions in the load supported by whisker and the load transferred from matrix to whisker. Additionally, it is found that during large strain deformation at higher temperatures, the enhancing of deformation temperature can reduce the effect of whisker rotation. Meanwhile, the stress-strain behavior of the composite is rather sensitive to deformation temperature. At a relatively lower temperature (150℃), the composite exhibits work hardening due to the matrix work hardening, but at relatively higher temperatures (300℃ and above), the composite shows strain softening due to whisker rotation. It is also found that during hot compression at higher temperatures, the softening rate of the composite decreases with increasing temperature. The predicted stress-strain behavior of the composite is approximately in agreement with the experimental results. 展开更多
关键词 metal matrix composite hot compressive behavior deformation temperature finite element method
下载PDF
Analysis of the Anomalous Phenomenon in the Retarding Potential Analyzer Measurements
2
作者 任军学 John L.POLANSKY Joseph WANG 《Plasma Science and Technology》 SCIE EI CAS CSCD 2014年第11期1042-1049,共8页
An anomalous phenomenon was observed in the retarding potential analyzer (RPA) measurements of the energy of the ion beam from an 8 cm argon ion source. The current-voltage (Ⅰ- Ⅴ) curve, which should theoretical... An anomalous phenomenon was observed in the retarding potential analyzer (RPA) measurements of the energy of the ion beam from an 8 cm argon ion source. The current-voltage (Ⅰ- Ⅴ) curve, which should theoretically descend, went up as the ion retarding potential was increased. Various explanations, such as the Townsend discharge theory and secondary electron emission etc. were proposed but denied by the theory application condition or the experiment results. An angle of about -10° was found between the axes of the ion beam and the RPA according to the contours of the ion beam density and direction. The particle simulation and experiment of the sum of the collector and wall current were conducted at different incident ion angles. The trends of the Ⅰ- Ⅴ curve in simulation results conformed with the experimental results in most cases. The ion trajectories were simulated at different retarding potentials with an incident angle of -10°. According :to these results, the reason for the anomalous phenomenon is that when there is a specific angle between the axes of the ion beam and the RPA, more ions are repelled from the vicinity of the ion retarding grid to avoid striking on the grid as the ion retarding potential increases. These redundant ions reach the plate and thus lead to the formation of an ascending Ⅰ- Ⅴ curve. 展开更多
关键词 retarding potential analyzer ion beam EXPERIMENT
下载PDF
Science Missions Using CubeSats
3
作者 SEYEDABADI M E FALANGA M +21 位作者 AZAM M BARESI N FLÉRON R JANTARACHOTE V JUAREZ ORTIZ V A JULCA YAYA J J LANGER M MANUTHASNA S MARTINOD N MUGHAL M R NOMAN M PARK J PIMNOO A PRAKS J REYNERI L SANNA A ŞIŞMAN TÇ SOME J ULAMBAYAR T YU Xiaozhou DONG Xiaolong BALDIS L 《空间科学学报》 CAS CSCD 北大核心 2020年第4期443-461,共19页
As the role of missions and experiments carried out in outer space becomes more and more essential in our understanding of many earthly problems,such as resource management,environmental problems,and disaster manageme... As the role of missions and experiments carried out in outer space becomes more and more essential in our understanding of many earthly problems,such as resource management,environmental problems,and disaster management,as well as space science questions,thanks to their lower cost and faster development process CubeSats can benefit humanity and therefore,young scientists and engineers have been motivated to research and develop new CubeSat missions.Not very long after their inception,CubeSats have evolved to become accepted platforms for scientific and commercial applications.The last couple of years showed that they are a feasible tool for conducting scientific experiments,not only in the Earth orbit but also in the interplanetary space.For many countries,a CubeSat mission could prompt the community and young teams around the world to build the national capacity to launch and operate national space missions.This paper presents an overview of the key scientific and engineering gateways opened up to the younger scientific community by the advent and adaptation of new technology into CubeSat missions.The role of cooperation and the opportunities for capacity-building and education are also explored.Thus,the present article also aims to provide useful recommendations to scientists,early-career researchers,engineers,students,and anyone who intends to explore the potential and opportunities offered by CubeSats and CubeSats-based missions. 展开更多
关键词 CUBESAT SPACE SCIENCE Small SATELLITES for SPACE SCIENCE Education EARTH observation
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部