The characteristics of helicity in a hurricane are presented by calculating the MM5 model output in addition to theoretical analysis. It is found that helicity in a hurricane mainly depends on its horizontal component...The characteristics of helicity in a hurricane are presented by calculating the MM5 model output in addition to theoretical analysis. It is found that helicity in a hurricane mainly depends on its horizontal component, whose magnitude is about 100 to 1000 times larger than its vertical component. It is also found that helicity is approximately conserved in the hurricane. Since the fluid has the intention to adjust the wind shear to satisfy the conservation of helicity, the horizontal vorticity is even larger than the vertical vorticity, and the three-dimensional vortices slant to the horizontal plane except in the inner eye. There are significant horizontal vortices and inhomogeneous helical flows in the hurricane. The formation of the spiral rainband is discussed by using the law of horizontal helical flows. It is closely related to the horizontal strong vortices and inhomogeneous helical flows.展开更多
A limited-area primitive equation model is used to study the role of the β-effect and a uniform current on tropical cyclone (TC) intensity. It is found that TC intensity is reduced in a non-quiescent environment comp...A limited-area primitive equation model is used to study the role of the β-effect and a uniform current on tropical cyclone (TC) intensity. It is found that TC intensity is reduced in a non-quiescent environment compared with the case of no uniform current. On an f-plane, the rate of intensification of a tropical cyclone is larger than that of the uniform flow. A TC on a β-plane intensifies slower than one on an f-plane. The main physical characteristic that distinguishes the experiments is the asymmetric thermodynamic (including convective) and dynamic structures present when either a uniform flow or β-effect is introduced. But a fairly symmetric TC structure is simulated on an f-plane. The magnitude of the warm core and the associated subsidence are found to be responsible for such simulated intensity changes. On an f-plane, the convection tends to be symmetric, which results in strong upper-level convergence near the center and hence strong forced subsidence and a very warm core. On the other hand, horizontal advection of temperature cancels part of the adiabatic heating and results in less warming of the core, and hence the TC is not as intense. This advective process is due to the tilt of the vortex as a result of the β-effect. A similar situation occurs in the presence of a uniform flow. Thus, the asymmetric horizontal advection of temperature plays an important role in the temperature distribution. Dynamically, the asymmetric angular momentum (AM) flux is very small on an f-plane throughout the troposphere. However, the total AM exports at the upper levels for a TC either on a β-plane or with a uniform flow environment are larger because of an increase of the asymmetric as well as symmetric AM export on the plane at radii >450 km, and hence there is a lesser intensification.展开更多
The monthly mean temperature for October in the Fenglin National Natural Reserve of Wuying, in Heilongjiang province, was reconstructed for the period running from 1796 to 2004 using RES tree ring chronology. The expl...The monthly mean temperature for October in the Fenglin National Natural Reserve of Wuying, in Heilongjiang province, was reconstructed for the period running from 1796 to 2004 using RES tree ring chronology. The explained variance of the reconstruction is 34.8%. In the past 209 years, there are 4 colder and 4 warmer periods according to the reconstructed series. A period of 3.33-year is found significant based on the power spectrum method. Abrupt changes are also detected in the reconstructed series with 30-year time scale based on the smoothing t-test, smoothing F-test and Le Page test methods. Significant abrupt changes in mean value are observed for around 1871 and 1900, and a significant abrupt change in standard deviation is observed for around 1851.展开更多
A brief introduction of a global atmospheric circulation model CCM3, which is used to simulate the precipitation in China, the height and the flow fields of the atmosphere, is made and the reliability of simulation is...A brief introduction of a global atmospheric circulation model CCM3, which is used to simulate the precipitation in China, the height and the flow fields of the atmosphere, is made and the reliability of simulation is analyzed. According to the negative correlation between rainfall in the first flood period in South China (FFSC) and sea surface temperature anomalies (SSTA) in a key region in western Pacific warm pool (West Region), two sensitive experiments are designed to investigate the effects of the latter on the former and the possible physical mechanism is discussed. It is found that in cold water (warm water) years, the rainfall in South China (SC) is far more (less) than normal, while the rainfall in the middle and low reaches of the Yangtze River is relatively less (more). The best correlative area of precipitation is located in Guangdong Province. It matches the diagnostic result well. The effect of SSTA on precipitation of FFSC is realized through the abnormality of atmospheric circulation and tested by a P-σnine-layer regional climate model. Moreover, the simulated result of the P-σmodel is basically coincident with that of the CCM3.展开更多
The SCSMEX is a joint atmospheric and oceanic experiment by international efforts, aiming at studying the onset, maintenance, and variability of the South China Sea (SCS) summer monsoon, thus improving the monsoon p...The SCSMEX is a joint atmospheric and oceanic experiment by international efforts, aiming at studying the onset, maintenance, and variability of the South China Sea (SCS) summer monsoon, thus improving the monsoon prediction in Southeast and East Asian regions. The field experiment carried out in May-August 1998 was fully successful, with a large amount of meteorological and oceanographic data acquired that have been used in four dimensional data assimilations by several countries, in order to improve their numerical simulations and prediction. These datasets are also widely used in the follow-up SCS and East Asian monsoon study. The present paper has summarized the main research results obtained by Chinese meteorologists which cover six aspects: (1) onset processes and mechanism of the SCS summer monsoon; (2) development of convection and mesoscale convective systems (MCSs) during the onset phase and their interaction with large-scale circulation; (3) low-frequency oscillation and teleconnection effect; (4) measurements of surface fluxes over the SCS and their relationship with the monsoon activity; (5) oceanic thermodynamic structures, circulation, and mesoscale eddies in the SCS during the summer monsoon and their relationship with ENSO events; and (6) numerical simulations of the SCS and East Asian monsoon.展开更多
基金sponsored by the National Natural Science Foundation of China under Grant No.400750112001 PIA 20026 the National Key program for Developing Basic Sciences:CHeRES(G 1998040907).
文摘The characteristics of helicity in a hurricane are presented by calculating the MM5 model output in addition to theoretical analysis. It is found that helicity in a hurricane mainly depends on its horizontal component, whose magnitude is about 100 to 1000 times larger than its vertical component. It is also found that helicity is approximately conserved in the hurricane. Since the fluid has the intention to adjust the wind shear to satisfy the conservation of helicity, the horizontal vorticity is even larger than the vertical vorticity, and the three-dimensional vortices slant to the horizontal plane except in the inner eye. There are significant horizontal vortices and inhomogeneous helical flows in the hurricane. The formation of the spiral rainband is discussed by using the law of horizontal helical flows. It is closely related to the horizontal strong vortices and inhomogeneous helical flows.
基金sponsored by the National Natural Science Foundation of China under Grant Nos.49975014,40275018,and 40333025
文摘A limited-area primitive equation model is used to study the role of the β-effect and a uniform current on tropical cyclone (TC) intensity. It is found that TC intensity is reduced in a non-quiescent environment compared with the case of no uniform current. On an f-plane, the rate of intensification of a tropical cyclone is larger than that of the uniform flow. A TC on a β-plane intensifies slower than one on an f-plane. The main physical characteristic that distinguishes the experiments is the asymmetric thermodynamic (including convective) and dynamic structures present when either a uniform flow or β-effect is introduced. But a fairly symmetric TC structure is simulated on an f-plane. The magnitude of the warm core and the associated subsidence are found to be responsible for such simulated intensity changes. On an f-plane, the convection tends to be symmetric, which results in strong upper-level convergence near the center and hence strong forced subsidence and a very warm core. On the other hand, horizontal advection of temperature cancels part of the adiabatic heating and results in less warming of the core, and hence the TC is not as intense. This advective process is due to the tilt of the vortex as a result of the β-effect. A similar situation occurs in the presence of a uniform flow. Thus, the asymmetric horizontal advection of temperature plays an important role in the temperature distribution. Dynamically, the asymmetric angular momentum (AM) flux is very small on an f-plane throughout the troposphere. However, the total AM exports at the upper levels for a TC either on a β-plane or with a uniform flow environment are larger because of an increase of the asymmetric as well as symmetric AM export on the plane at radii >450 km, and hence there is a lesser intensification.
基金supported by the Special Research Program for Public-welfare Forestry(No. 200804001)National Science and Technology Support Program(No.2007BAC29B01)the Natural Science Foundation of China(No.40705032)
文摘The monthly mean temperature for October in the Fenglin National Natural Reserve of Wuying, in Heilongjiang province, was reconstructed for the period running from 1796 to 2004 using RES tree ring chronology. The explained variance of the reconstruction is 34.8%. In the past 209 years, there are 4 colder and 4 warmer periods according to the reconstructed series. A period of 3.33-year is found significant based on the power spectrum method. Abrupt changes are also detected in the reconstructed series with 30-year time scale based on the smoothing t-test, smoothing F-test and Le Page test methods. Significant abrupt changes in mean value are observed for around 1871 and 1900, and a significant abrupt change in standard deviation is observed for around 1851.
基金sponsored by the NSFC key project (40233037) and the "National Key Developing Programme for Basic Science" project (2004CB418300)
文摘A brief introduction of a global atmospheric circulation model CCM3, which is used to simulate the precipitation in China, the height and the flow fields of the atmosphere, is made and the reliability of simulation is analyzed. According to the negative correlation between rainfall in the first flood period in South China (FFSC) and sea surface temperature anomalies (SSTA) in a key region in western Pacific warm pool (West Region), two sensitive experiments are designed to investigate the effects of the latter on the former and the possible physical mechanism is discussed. It is found that in cold water (warm water) years, the rainfall in South China (SC) is far more (less) than normal, while the rainfall in the middle and low reaches of the Yangtze River is relatively less (more). The best correlative area of precipitation is located in Guangdong Province. It matches the diagnostic result well. The effect of SSTA on precipitation of FFSC is realized through the abnormality of atmospheric circulation and tested by a P-σnine-layer regional climate model. Moreover, the simulated result of the P-σmodel is basically coincident with that of the CCM3.
基金Supported by the National Key Program: SCSMEX under Grant 98-monsoon-7-3
文摘The SCSMEX is a joint atmospheric and oceanic experiment by international efforts, aiming at studying the onset, maintenance, and variability of the South China Sea (SCS) summer monsoon, thus improving the monsoon prediction in Southeast and East Asian regions. The field experiment carried out in May-August 1998 was fully successful, with a large amount of meteorological and oceanographic data acquired that have been used in four dimensional data assimilations by several countries, in order to improve their numerical simulations and prediction. These datasets are also widely used in the follow-up SCS and East Asian monsoon study. The present paper has summarized the main research results obtained by Chinese meteorologists which cover six aspects: (1) onset processes and mechanism of the SCS summer monsoon; (2) development of convection and mesoscale convective systems (MCSs) during the onset phase and their interaction with large-scale circulation; (3) low-frequency oscillation and teleconnection effect; (4) measurements of surface fluxes over the SCS and their relationship with the monsoon activity; (5) oceanic thermodynamic structures, circulation, and mesoscale eddies in the SCS during the summer monsoon and their relationship with ENSO events; and (6) numerical simulations of the SCS and East Asian monsoon.