The E1 Nifio-Southern Oscillation (ENSO) is emphasized the roles of wind stress and heat flux environmental forcing to the ocean; its effect and modulated by many factors; most previous studies have in the tropical ...The E1 Nifio-Southern Oscillation (ENSO) is emphasized the roles of wind stress and heat flux environmental forcing to the ocean; its effect and modulated by many factors; most previous studies have in the tropical Pacific. Freshwater flux (FWF) is another the related ocean salinity variability in the ENSO region have been of increased interest recently. Currently, accurate quantifications of the FWF roles in the climate remain challenging; the related observations and coupled ocean-atmosphere modeling involve large elements of uncertainty. In this study, we utilized satellite-based data to represent FWF-induced feedback in the tropical Pacific climate system; we then incorporated these data into a hybrid coupled ocean-atmosphere model (HCM) to quantify its effects on ENSO. A new mechanism was revealed by which interannual FWF forcing modulates ENSO in a significant way. As a direct forcing, FWF exerts a significant influence on the ocean through sea surface salinity (SSS) and buoyancy flux (QB) in the western-central tropical Pacific. The SSS perturbations directly induced by ENSO-related interannual FWF variability affect the stability and mixing in the upper ocean. At the same time, the ENSO-induced FWF has a compensating effect on heat flux, acting to reduce interannual Qs variability during ENSO cycles. These FWF-induced processes in the ocean tend to modulate the vertical mixing and entrainment in the upper ocean, enhancing cooling during La Nifia and enhancing warming during E1 Nifio, respectively. The interannual FWF forcing-induced positive feedback acts to enhance ENSO amplitude and lengthen its time scales in the tropical Pacific coupled climate system.展开更多
The lack of in situ observations and the uncertainties of the drag coefficient at high wind speeds result in limited understanding of heat flux through the air-sea interface and thus inaccurate estimation of typhoon i...The lack of in situ observations and the uncertainties of the drag coefficient at high wind speeds result in limited understanding of heat flux through the air-sea interface and thus inaccurate estimation of typhoon intensity in numerical models.In this study,buoy observations and numerical simulations from an air-sea coupled model are used to assess the surface heat flux changes and impacts of the drag coefficient parameterization schemes on its simulations during the passage of Typhoon Kalmaegi(2014).Three drag coefficient schemes,which make the drag coefficient increase,level off,and decrease,respectively,are considered.The air-sea coupled model captured both trajectory and intensity changes better than the atmosphere-only model,though with relatively weaker sea surface cooling(SSC)compared to that captured by buoy observations,which led to relatively higher heat flux and thus a stronger typhoon.Different from previous studies,for a moderate typhoon,the coupled simulation with the increasing drag coefficient scheme outputted an intensity most consistent with the observation because of the strongest SSC,reasonable ratio of latent and sensible heat exchange coefficients,and an obvious reduction in the overestimated surface heat flux among all experiments.Results from sensitivity experiments showed that surface heat flux was significantly determined by the drag coefficient-induced SSC rather than the resulting wind speed changes.Only when SSC differs indistinctively(<0.4°C)between the coupled simulations,heat flux showed a weak positive correlation with the drag coefficient-impacted 10-m wind speed.The drag coefficient also played an important role in decreasing heat flux even a long time after the passage of Kalmaegi because of the continuous upwelling from deeper ocean layers driven by the impacted momentum flux through the air-sea interface.展开更多
基金supported in part by NSF Grant(ATM-0727668and AGS-1061998)NOAA Grant(NA08OAR4310885)+3 种基金NASA Grants(NNX08AI74G,NNX08AI76G,and NNX09AF41G)F.Zheng is supported by the National Basic Research Program of China(GrantNos.2012CB417404and2012CB955202)the Natural Science Foundation of China(Grant No.41075064)Pei is additionally supported by China Scholarship Coun-cil(CSC) with the Ocean University of China,Qingdao,China
文摘The E1 Nifio-Southern Oscillation (ENSO) is emphasized the roles of wind stress and heat flux environmental forcing to the ocean; its effect and modulated by many factors; most previous studies have in the tropical Pacific. Freshwater flux (FWF) is another the related ocean salinity variability in the ENSO region have been of increased interest recently. Currently, accurate quantifications of the FWF roles in the climate remain challenging; the related observations and coupled ocean-atmosphere modeling involve large elements of uncertainty. In this study, we utilized satellite-based data to represent FWF-induced feedback in the tropical Pacific climate system; we then incorporated these data into a hybrid coupled ocean-atmosphere model (HCM) to quantify its effects on ENSO. A new mechanism was revealed by which interannual FWF forcing modulates ENSO in a significant way. As a direct forcing, FWF exerts a significant influence on the ocean through sea surface salinity (SSS) and buoyancy flux (QB) in the western-central tropical Pacific. The SSS perturbations directly induced by ENSO-related interannual FWF variability affect the stability and mixing in the upper ocean. At the same time, the ENSO-induced FWF has a compensating effect on heat flux, acting to reduce interannual Qs variability during ENSO cycles. These FWF-induced processes in the ocean tend to modulate the vertical mixing and entrainment in the upper ocean, enhancing cooling during La Nifia and enhancing warming during E1 Nifio, respectively. The interannual FWF forcing-induced positive feedback acts to enhance ENSO amplitude and lengthen its time scales in the tropical Pacific coupled climate system.
基金supported by the National Natural Science Foundation of China under Grant Nos. 41775053, 41976003, and 42192552the National Key Research and Development Program of China under Grant Nos. 2019YFC1510001 and 2019YFC1510102support has been provided by the National Program on Global Change and Air-Sea Interaction (GASI-IPOVAI-04)
文摘The lack of in situ observations and the uncertainties of the drag coefficient at high wind speeds result in limited understanding of heat flux through the air-sea interface and thus inaccurate estimation of typhoon intensity in numerical models.In this study,buoy observations and numerical simulations from an air-sea coupled model are used to assess the surface heat flux changes and impacts of the drag coefficient parameterization schemes on its simulations during the passage of Typhoon Kalmaegi(2014).Three drag coefficient schemes,which make the drag coefficient increase,level off,and decrease,respectively,are considered.The air-sea coupled model captured both trajectory and intensity changes better than the atmosphere-only model,though with relatively weaker sea surface cooling(SSC)compared to that captured by buoy observations,which led to relatively higher heat flux and thus a stronger typhoon.Different from previous studies,for a moderate typhoon,the coupled simulation with the increasing drag coefficient scheme outputted an intensity most consistent with the observation because of the strongest SSC,reasonable ratio of latent and sensible heat exchange coefficients,and an obvious reduction in the overestimated surface heat flux among all experiments.Results from sensitivity experiments showed that surface heat flux was significantly determined by the drag coefficient-induced SSC rather than the resulting wind speed changes.Only when SSC differs indistinctively(<0.4°C)between the coupled simulations,heat flux showed a weak positive correlation with the drag coefficient-impacted 10-m wind speed.The drag coefficient also played an important role in decreasing heat flux even a long time after the passage of Kalmaegi because of the continuous upwelling from deeper ocean layers driven by the impacted momentum flux through the air-sea interface.