The Pearl River Delta(PRD),a tornado hotspot,forms a distinct trumpet-shaped coastline that concaves toward the South China Sea.During the summer monsoon season,low-level southwesterlies over the PRD’s sea surface te...The Pearl River Delta(PRD),a tornado hotspot,forms a distinct trumpet-shaped coastline that concaves toward the South China Sea.During the summer monsoon season,low-level southwesterlies over the PRD’s sea surface tend to be turned toward the west coast,constituting a convergent wind field along with the landward-side southwesterlies,which influences regional convective weather.This two-part study explores the roles of this unique land–sea contrast of the trumpet-shaped coastline in the formation of a tornadic mesovortex within monsoonal flows in this region.Part I primarily presents observational analyses of pre-storm environments and storm evolutions.The rotating storm developed in a lowshear environment(not ideal for a supercell)under the interactions of three air masses under the influence of the land–sea contrast,monsoon,and storm cold outflows.This intersection zone(or“triple point”)is typically characterized by local enhancements of ambient vertical vorticity and convergence.Based on a rapid-scan X-band phased-array radar,finger-like echoes were recognized shortly after the gust front intruded on the triple point.Developed over the triple point,they rapidly wrapped up with a well-defined low-level mesovortex.It is thus presumed that the triple point may have played roles in the mesovortex genesis,which will be demonstrated in Part II with multiple sensitivity numerical simulations.The findings also suggest that when storms pass over the boundary intersection zone in the PRD,the expected possibility of a rotating storm occurring is relatively high,even in a low-shear environment.Improved knowledge of such environments provides additional guidance to assess the regional tornado risk.展开更多
Based on the Ocean Reanalysis System version 5(ORAS5)and the fifth-generation reanalysis datasets derived from European Centre for Medium-Range Weather Forecasts(ERA5),we investigate the different impacts of the centr...Based on the Ocean Reanalysis System version 5(ORAS5)and the fifth-generation reanalysis datasets derived from European Centre for Medium-Range Weather Forecasts(ERA5),we investigate the different impacts of the central Pacific(CP)El Niño and the eastern Pacific(EP)El Niño on the Southern Ocean(SO)mixed layer depth(MLD)during austral winter.The MLD response to the EP El Niño shows a dipole pattern in the South Pacific,namely the MLD dipole,which is the leading El Niño-induced MLD variability in the SO.The tropical Pacific warm sea surface temperature anomaly(SSTA)signal associated with the EP El Niño excites a Rossby wave train propagating southeastward and then enhances the Amundsen Sea low(ASL).This results in an anomalous cyclone over the Amundsen Sea.As a result,the anomalous southerly wind to the west of this anomalous cyclone advects colder and drier air into the southeast of New Zealand,leading to surface cooling through less total surface heat flux,especially surface sensible heat(SH)flux and latent heat(LH)flux,and thus contributing to the mix layer(ML)deepening.The east of the anomalous cyclone brings warmer and wetter air to the southwest of Chile,but the total heat flux anomaly shows no significant change.The warm air promotes the sea ice melting and maintains fresh water,which strengthens stratification.This results in a shallower MLD.During the CP El Niño,the response of MLD shows a separate negative MLD anomaly center in the central South Pacific.The Rossby wave train triggered by the warm SSTA in the central Pacific Ocean spreads to the Amundsen Sea,which weakens the ASL.Therefore,the anomalous anticyclone dominates the Amundsen Sea.Consequently,the anomalous northerly wind to the west of anomalous anticyclone advects warmer and wetter air into the central and southern Pacific,causing surface warming through increased SH,LH,and longwave radiation flux,and thus contributing to the ML shoaling.However,to the east of the anomalous anticyclone,there is no statistically significant impact on the MLD.展开更多
Fine particulate matter(PM_(2.5))and ozone(O_(3))double high pollution(DHP)events have occurred frequently over China in recent years,but their causes are not completely clear.In this study,the spatiotemporal distribu...Fine particulate matter(PM_(2.5))and ozone(O_(3))double high pollution(DHP)events have occurred frequently over China in recent years,but their causes are not completely clear.In this study,the spatiotemporal distribution of DHP events in China during 2013–20 is analyzed.The synoptic types affecting DHP events are identified with the Lamb–Jenkinson circulation classification method.The meteorological and chemical causes of DHP events controlled by the main synoptic types are further investigated.Results show that DHP events(1655 in total for China during 2013–20)mainly occur over the North China Plain,Yangtze River Delta,Pearl River Delta,Sichuan Basin,and Central China.The occurrence frequency increases by 5.1%during 2013–15,and then decreases by 56.1%during 2015–20.The main circulation types of DHP events are“cyclone”and“anticyclone”,accounting for over 40%of all DHP events over five main polluted regions in China,followed by southerly or easterly flat airflow types,like“southeast”,“southwest”,and“east”.Compared with non-DHP events,DHP events are characterized by static or weak wind,high temperature(20.9℃ versus 23.1℃)and low humidity(70.0%versus 64.9%).The diurnal cycles of meteorological conditions cause PM_(2.5)(0300–1200 LST,Local Standard Time=UTC+8 hours)and O_(3)(1500–2100 LST)to exceed the national standards at different periods of the DHP day.Three pollutant conversion indices further indicate the rapid secondary conversions during DHP events,and thus the concentrations of NO_(2),SO_(2) and volatile organic compounds decrease by 13.1%,4.7%and 4.4%,respectively.The results of this study can be informative for future decisions on the management of DHP events.展开更多
This article summarizes the progress made in predictability studies of weather and climate in recent years in China,with a main focus on advances in methods to study error growth dynamics and reduce uncertainties in t...This article summarizes the progress made in predictability studies of weather and climate in recent years in China,with a main focus on advances in methods to study error growth dynamics and reduce uncertainties in the forecasting of weather and climate.Specifically,it covers(a)advances in methods to study weather and climate predictability dynamics,especially those in nonlinear optimal perturbation methods associated with initial errors and model errors and their applications to ensemble forecasting and target observations,(b)new data assimilation algorithms for initialization of predictions and novel assimilation approaches to neutralize the combined effects of initial and model errors for weather and climate,(c)applications of new statistical approaches to climate predictions,and(d)studies on meso-to small-scale weather system predictability dynamics.Some of the major frontiers and challenges remaining in predictability studies are addressed in this context.展开更多
With the extreme drought(flood)event in southern China from July to August in 2022(1999)as the research object,based on the comprehensive diagnosis and composite analysis on the anomalous drought and flood years from ...With the extreme drought(flood)event in southern China from July to August in 2022(1999)as the research object,based on the comprehensive diagnosis and composite analysis on the anomalous drought and flood years from July to August in 1961-2022,it is found that there are significant differences in the characteristics of the vertically integrated moisture flux(VIMF)anomaly circulation pattern and the VIMF convergence(VIMFC)anomaly in southern China in drought and flood years,and the VIMFC,a physical quantity,can be regarded as an indicative physical factor for the"strong signal"of drought and flood in southern China.Specifically,in drought years,the VIMF anomaly in southern China is an anticyclonic circulation pattern and the divergence characteristics of the VIMFC are prominent,while those are opposite in flood years.Based on the SST anomaly in the typical draught year of 2022 in southern China and the SST deviation distribution characteristics of abnormal draught and flood years from 1961 to 2022,five SST high impact areas(i.e.,the North Pacific Ocean,Northwest Pacific Ocean,Southwest Pacific Ocean,Indian Ocean,and East Pacific Ocean)are selected via the correlation analysis of VIMFC and the global SST in the preceding months(May and June)and in the study period(July and August)in 1961-2022,and their contributions to drought and flood in southern China are quantified.Our study reveals not only the persistent anomalous variation of SST in the Pacific and the Indian Ocean but also its impact on the pattern of moisture transport.Furthermore,it can be discovered from the positive and negative phase fitting of SST that the SST composite flow field in high impact areas can exhibit two types of anomalous moisture transport structures that are opposite to each other,namely an anticyclonic(cyclonic)circulation pattern anomaly in southern China and the coastal areas of east China.These two types of opposite anomalous moisture transport structures can not only drive the formation of drought(flood)in southern China but also exert its influence on the persistent development of the extreme weather.展开更多
Atmospheric electricity is composed of a series of electric phenomena in the atmosphere.Significant advances in atmospheric electricity research conducted in China have been achieved in recent years.In this paper,the ...Atmospheric electricity is composed of a series of electric phenomena in the atmosphere.Significant advances in atmospheric electricity research conducted in China have been achieved in recent years.In this paper,the research progress on atmospheric electricity achieved in China during 2019-22 is reviewed focusing on the following aspects:(1)lightning detection and location techniques,(2)thunderstorm electricity,(3)lightning forecasting methods and techniques,(4)physical processes of lightning discharge,(5)high energy emissions and effects of thunderstorms on the upper atmosphere,and(6)the effect of aerosol on lightning.展开更多
Studies of the multi-scale climate variability of the Asian monsoon are essential to an advanced understanding of the physical processes of the global climate system.In this paper,the progress achieved in this field i...Studies of the multi-scale climate variability of the Asian monsoon are essential to an advanced understanding of the physical processes of the global climate system.In this paper,the progress achieved in this field is systematically reviewed,with a focus on the past several years.The achievements are summarized into the following topics:(1)the onset of the South China Sea summer monsoon;(2)the East Asian summer monsoon;(3)the East Asian winter monsoon;and(4)the Indian summer monsoon.Specifically,new results are highlighted,including the advanced or delayed local monsoon onset tending to be synchronized over the Arabian Sea,Bay of Bengal,Indochina Peninsula,and South China Sea;the basic features of the record-breaking mei-yu in 2020,which have been extensively investigated with an emphasis on the role of multi-scale processes;the recovery of the East Asian winter monsoon intensity after the early 2000s in the presence of continuing greenhouse gas emissions,which is believed to have been dominated by internal climate variability(mostly the Arctic Oscillation);and the accelerated warming over South Asia,which exceeded the tropical Indian Ocean warming,is considered to be the main driver of the Indian summer monsoon rainfall recovery since 1999.A brief summary is provided in the final section along with some further discussion on future research directions regarding our understanding of the Asian monsoon variability.展开更多
In this paper we present a review of atmospheric chemistry research in China over the period 2006-2010, focusing on tropospheric ozone, aerosol chemistry, and the interactions between trace gases and aerosols in the p...In this paper we present a review of atmospheric chemistry research in China over the period 2006-2010, focusing on tropospheric ozone, aerosol chemistry, and the interactions between trace gases and aerosols in the polluted areas of China. Over the past decade, China has suffered severe photochemical smog and haze pollution, especially in North China, the Yangtze River Delta, and the Pearl River Delta. Much scientific work on atmospheric chemistry and physics has been done to address this large-scale, complex environmental problem. Intensive field experiments, satellite data analyses, and model simulations have shown that air pollution is significantly changing the chemical and physical characters of the natural atmosphere over these parts of China. In addition to strong emissions of primary pollutants, photochemical and heterogeneous reactions play key roles in the formation of complex pollution. More in-depth research is recommended to reveal the formation mechanism of photochemical smog and haze pollution and their climatic effects at the urban, regional, and global scales.展开更多
A central Pacific(CP)El Niño event occurred in 2018/19.Previous studies have shown that different mechanisms are responsible for different subtypes of CP El Niño events(CP-I El Niño and CP-II El Niñ...A central Pacific(CP)El Niño event occurred in 2018/19.Previous studies have shown that different mechanisms are responsible for different subtypes of CP El Niño events(CP-I El Niño and CP-II El Niño).By comparing the evolutions of surface winds,ocean temperatures,and heat budgets of the CP-I El Niño,CP-II El Niño,and 2018/19 El Niño,it is illustrated that the subtropical westerly anomalies in the North Pacific,which led to anomalous convergence of Ekman flow and surface warming in the central equatorial Pacific,played an important role in the 2018/19 El Niño event as well as in the CP-II El Niño.Although the off-equatorial forcing played a vital role,it is found that the equatorial forcing acted as a driving(damping)term in boreal spring(summer)of the 2018/19 El Niño.The 2018/19 El Niño provides a timely and vivid example that helps illustrate the proposed mechanism of the CP El Niño,which could be leveraged to improve El Niño predictability.展开更多
Mole fractions of atmospheric CO2(XCO2)have been continuously measured from October 2014 to March 2016 at the Guangzhou Panyu Atmospheric Composition Site(23.00°N,113.21°E;140 m MSL)in the Pearl River Delta(...Mole fractions of atmospheric CO2(XCO2)have been continuously measured from October 2014 to March 2016 at the Guangzhou Panyu Atmospheric Composition Site(23.00°N,113.21°E;140 m MSL)in the Pearl River Delta(PRD)region using a cavity ring-down spectrometer.Approximately 66.63%,19.28%,and 14.09%of the observed values were filtered as background,pollutant source,and sink due to biospheric uptake,respectively,by applying a robust local regression procedure.Their corresponding mean values were 424.12±10.12 ppm(×10-6 mol mol-1),447.83±13.63 ppm,and 408.83±7.75 ppm.The background XCO2 levels were highest in spring and winter,moderate in autumn,and lowest in summer.The diurnal XCO2 was at a minimum from 1400-1600 LST(Local Standard Time)and a maximum at 0500 LST the next day.The increase of XCO2 in spring and summer was mainly associated with polluted air masses from south coastal Vietnam,the South China Sea,and the southeast Pearl River Estuary.With the exception of summer,airflow primarily from marine regions southeast of Taiwan that passed over the Pearl River Estuary had a greater impact on XCO2,suggesting an important potential source region.展开更多
In the satellite synthetic aperture radar(SAR) images of the Bohai Sea and Huanghai Sea,the authors observe sea surface imprints of wave-like patterns with an average wavelength of 3.8 km.Comparing SAR observations ...In the satellite synthetic aperture radar(SAR) images of the Bohai Sea and Huanghai Sea,the authors observe sea surface imprints of wave-like patterns with an average wavelength of 3.8 km.Comparing SAR observations with sea surface wind fields and surface weather maps,the authors find that the occurrence of the wave-like phenomena is associated with the passing of atmospheric front.The authors define the waves as atmospheric frontal gravity waves.The dynamical parameters of the wave packets are derived from statistics of 9 satellite SAR images obtained from 2002 to 2008.A two-dimensional linear physical wave model is used to analyze the generation mechanism of the waves.The atmospheric frontal wave induced wind variation across the frontal wave packet is compared with wind retrievals from the SAR images.The CMOD-5(C-band scatterometer ocean geophysical model function) is used for SAR wind retrievals VV(transmitted vertical and received vertical) for ENVISAT and HH(transmitted horizontally and received horizontally) for RADARSAT-1.A reasonable agreement between the analytical solution and the SAR observation is reached.This new SAR frontal wave observation adds to the school of SAR observations of sea surface imprints of AGWs including island lee waves,coastal lee waves,and upstream Atmospheric Gravity Waves(AGW).展开更多
El Ni?o–Southern Oscillation(ENSO) exhibits a distinctive phase-locking characteristic, first expressed during its onset in boreal spring, developing during summer and autumn, reaching its peak towards winter, and de...El Ni?o–Southern Oscillation(ENSO) exhibits a distinctive phase-locking characteristic, first expressed during its onset in boreal spring, developing during summer and autumn, reaching its peak towards winter, and decaying over the next spring. Several studies have demonstrated that this feature arises as a result of seasonal variation in the growth rate of ENSO as expressed by the sea surface temperature(SST). The bias towards simulating the phase locking of ENSO by many state-of-the-art climate models is also attributed to the unrealistic depiction of the growth rate. In this study, the seasonal variation of SST growth rate in the Ni?o-3.4 region(5°S–5°N, 120°–170°W) is estimated in detail based on the mixed layer heat budget equation and recharge oscillator model during 1981–2020. It is suggested that the consideration of a variable mixed layer depth is essential to its diagnostic process. The estimated growth rate has a remarkable seasonal cycle with minimum rates occurring in spring and maximum rates evident in autumn. More specifically, the growth rate derived from the meridional advection(surface heat flux) is positive(negative) throughout the year. Vertical diffusion generally makes a negative contribution to the evolution of growth rate and the magnitude of vertical entrainment represents the smallest contributor. Analysis indicates that the zonal advective feedback is regulated by the meridional immigration of the intertropical convergence zone, which approaches its southernmost extent in February and progresses to its northernmost location in September, and dominates the seasonal variation of the SST growth rate.展开更多
One of the basic characteristics of Earth's modern climate is that the Northern Hemisphere(NH) is climatologically warmer than the Southern Hemisphere(SH). Here, model performances of this basic state are examined...One of the basic characteristics of Earth's modern climate is that the Northern Hemisphere(NH) is climatologically warmer than the Southern Hemisphere(SH). Here, model performances of this basic state are examined using simulation results from 26 CMIP6 models. Results show that the CMIP6 models underestimate the contrast in interhemispheric surface temperatures on average(0.8 K for CMIP6 mean versus 1.4 K for reanalysis data mean), and that there is a large intermodel spread, ranging from -0.7 K to 2.3 K. A box model energy budget analysis shows that the contrast in interhemispheric shortwave absorption at the top of the atmosphere, the contrast in interhemispheric greenhouse trapping, and the crossequatorial northward ocean heat transport, are all underestimated in the multimodel mean. By examining the intermodel spread, we find intermodel biases can be tracked back to biases in midlatitude shortwave cloud forcing in AGCMs. Models with a weaker interhemispheric temperature contrast underestimate the shortwave cloud reflection in the SH but overestimate the shortwave cloud reflection in the NH, which are respectively due to underestimation of the cloud fraction over the SH extratropical ocean and overestimation of the cloud liquid water content over the NH extratropical continents.Models that underestimate the interhemispheric temperature contrast exhibit larger double ITCZ biases, characterized by excessive precipitation in the SH tropics. Although this intermodel spread does not account for the multimodel ensemble mean biases, it highlights that improving cloud simulation in AGCMs is essential for simulating the climate realistically in coupled models.展开更多
This study investigated the effects of upper-level descending inflow(ULDI)associated with inner-eyewall convection on the formation of the moat in tropical cyclones(TCs)with secondary eyewall formation(SEF).In our num...This study investigated the effects of upper-level descending inflow(ULDI)associated with inner-eyewall convection on the formation of the moat in tropical cyclones(TCs)with secondary eyewall formation(SEF).In our numerical experiments,a clear moat with SEF occurred in TCs with a significant ULDI,while no SEF occurred in TCs without a significant ULDI.The eyewall convection developed more vigorously in the control run.A ULDI occurred outside the inner-eyewall convection,where it was symmetrically unstable.The ULDI was initially triggered by the diabatic warming released by the inner eyewall and later enhanced by the cooling below the anvil cloud.The ULDI penetrated the outer edge of the inner eyewall with relatively dry air and prevented excessive solid-phase hydrometeors from being advected further outward.It produced extensive sublimation cooling of falling hydrometeors between the eyewall and the outer convection.The sublimation cooling resulted in negative buoyancy and further induced strong subsidence between the eyewall and the outer convection.As a result,a clear moat was generated.Development of the moat in the ongoing SEF prevented the outer rainband from moving farther inward,helping the outer rainband to symmetrize into an outer eyewall.In the sensitivity experiment,no significant ULDI formed since the eyewall convection was weaker,and the eyewall anvil developed relatively lower,meaning the formation of a moat and thus an outer eyewall was less likely.This study suggests that a better-represented simulation of inner-eyewall convective structures and distribution of the solid-phase hydrometeors is important to the prediction of SEF.展开更多
As demonstrated in the first part of this study(Part I),wind-shift boundaries routinely form along the west coast of the Pearl River Delta due to the land-sea contrast of a“trumpet”shape coastline in the summer mons...As demonstrated in the first part of this study(Part I),wind-shift boundaries routinely form along the west coast of the Pearl River Delta due to the land-sea contrast of a“trumpet”shape coastline in the summer monsoon season.Through multiple numerical simulations,this article(Part II)aims to examine the roles of the trumpet-shaped coastline in the mesovortex genesis during the 1 June 2020 tornadic event.The modeling reproduced two mesovortices that are in close proximity in time and space to the realistic mesovortices.In addition to the modeled mesovortex over the triple point where strong ambient vertical vorticity was located,another mesovortex originated from an enhanced discrete vortex along an airmass boundary via shear instability.On the fine-scale storm morphology,finger-like echoes preceding hook echoes were also reproduced around the triple point.Results from sensitivity experiments suggest that the unique topography plays an essential role in modifying the vorticity budget during the mesovortex formation.While there is a high likelihood of an upcoming storm evolving into a rotating storm over the triple point,the simulation's accuracy is sensitive to the local environmental details and storm dynamics.The strengths of cold pool surges from upstream storms may influence the stretching of low-level vertically oriented vortex and thus the wrap-up of finger-like echoes.These findings suggest that the trumpet-shaped coastline is an important component of mesovortex production during the active monsoon season.It is hoped that this study will increase the situational awareness for forecasters regarding regional non-mesocyclone tornadic environments.展开更多
This study aims to investigate characteristics of continental shelf wave(CSW)on the northwestern continental shelf of the South China Sea(SCS)induced by winter storms in 2021.Mooring and cruise observations,tidal gaug...This study aims to investigate characteristics of continental shelf wave(CSW)on the northwestern continental shelf of the South China Sea(SCS)induced by winter storms in 2021.Mooring and cruise observations,tidal gauge data at stations Hong Kong,Zhapo and Qinglan and sea surface wind data from January 1 to February 28,2021 are used to examine the relationship between along-shelf wind and sea level fluctuation.Two events of CSWs driven by the along-shelf sea surface wind are detected from wavelet spectra of tidal gauge data.The signals are triply peaked at periods of 56 h,94 h and 180 h,propagating along the coast with phase speed ranging from 6.9 m/s to18.9 m/s.The dispersion relation shows their property of the Kelvin mode of CSW.We develop a simple method to estimate amplitude of sea surface fluctuation by along-shelf wind.The results are comparable with the observation data,suggesting it is effective.The mode 2 CSWs fits very well with the mooring current velocity data.The results from rare current help to understand wave-current interaction in the northwestern SCS.展开更多
This work uses cloud-resolving simulations to study mock-Walker cells driven by a specified sea surface temperature(SST).The associated precipitation in the mock-Walker cells exhibits three different modes,including a...This work uses cloud-resolving simulations to study mock-Walker cells driven by a specified sea surface temperature(SST).The associated precipitation in the mock-Walker cells exhibits three different modes,including a single peak of precipitation over the SST maximum(mode 1),symmetric double peaks of precipitation straddling the SST maximum(mode 2),and a single peak of precipitation on one side of the SST maximum(mode 3).The three modes are caused by three distinct convective activity center migration traits.Analyses indicate that the virtual effect of water vapor plays an important role in differentiating the three modes.When the SST gradient is large,the virtual effect may be strong enough to overcome the temperature effect,generating a low-level low-pressure anomaly below the ascending branch of the Walker cell off the center.The results here highlight the importance of the virtual effect of water vapor and its interaction with convection and large-scale circulation in the Walker circulation.展开更多
Seasonal forecasting of the Indian summer monsoon by dynamically downscaling the CFSv2 output using a high resolution WRF model over the hindcast period of 1982-2008 has been performed in this study. The April start e...Seasonal forecasting of the Indian summer monsoon by dynamically downscaling the CFSv2 output using a high resolution WRF model over the hindcast period of 1982-2008 has been performed in this study. The April start ensemble mean of the CFSv2 has been used to provide the initial and lateral boundary conditions for driving the WRF. The WRF model is integrated from 1st May through 1st October for each monsoon season. The analysis suggests that the WRF exhibits potential skill in improving the rainfall skill as well as the seasonal pattern and minimizes the meteorological errors as compared to the parent CFSv2 model. The rainfall pattern is simulated quite closer to the observation (IMD) in the WRF model over CFSv2 especially over the significant rainfall regions of India such as the Western Ghats and the central India. Probability distributions of the rainfall show that the rainfall is improved with the WRF. However, the WRF simulates copious amounts of rainfall over the eastern coast of India. Surface and upper air meteorological parameters show that the WRF model improves the simulation of the lower level and upper-level winds, MSLP, CAPE and PBL height. The specific humidity profiles show substantial improvement along the vertical column of the atmosphere which can be directly related to the net precipitable water. The CFSv2 underestimates the specific humidity along the vertical which is corrected by the WRF model. Over the Bay of Bengal, the WRF model overestimates the CAPE and specific humidity which may be attributed to the copious amount of rainfall along the eastern coast of India. Residual heating profiles also show that the WRF improves the thermodynamics of the atmosphere over 700 hPa and 400 hPa levels which helps in improving the rainfall simulation. Improvement in the land surface fluxes is also witnessed in the WRF model.展开更多
基金supported by the Guangdong Major Project of Basic and Applied Basic Research(Grant No.2020B0301030004)the National Natural Science Foundation of China(Grant Nos.42275006 and 42030604)+1 种基金the Guangdong Basic and Applied Basic Research Foundation(Grant No.2023A1515011705)the Science and Technology Research Project for Society of Foshan(Grant No.2120001008761).
文摘The Pearl River Delta(PRD),a tornado hotspot,forms a distinct trumpet-shaped coastline that concaves toward the South China Sea.During the summer monsoon season,low-level southwesterlies over the PRD’s sea surface tend to be turned toward the west coast,constituting a convergent wind field along with the landward-side southwesterlies,which influences regional convective weather.This two-part study explores the roles of this unique land–sea contrast of the trumpet-shaped coastline in the formation of a tornadic mesovortex within monsoonal flows in this region.Part I primarily presents observational analyses of pre-storm environments and storm evolutions.The rotating storm developed in a lowshear environment(not ideal for a supercell)under the interactions of three air masses under the influence of the land–sea contrast,monsoon,and storm cold outflows.This intersection zone(or“triple point”)is typically characterized by local enhancements of ambient vertical vorticity and convergence.Based on a rapid-scan X-band phased-array radar,finger-like echoes were recognized shortly after the gust front intruded on the triple point.Developed over the triple point,they rapidly wrapped up with a well-defined low-level mesovortex.It is thus presumed that the triple point may have played roles in the mesovortex genesis,which will be demonstrated in Part II with multiple sensitivity numerical simulations.The findings also suggest that when storms pass over the boundary intersection zone in the PRD,the expected possibility of a rotating storm occurring is relatively high,even in a low-shear environment.Improved knowledge of such environments provides additional guidance to assess the regional tornado risk.
基金The Oceanic Interdisciplinary Program of Shanghai Jiao Tong University under contract No.SL2021ZD204the Sino-German Mobility Program under contract No.M0333the grant of Shanghai Frontiers Science Center of Polar Science(SCOPS).
文摘Based on the Ocean Reanalysis System version 5(ORAS5)and the fifth-generation reanalysis datasets derived from European Centre for Medium-Range Weather Forecasts(ERA5),we investigate the different impacts of the central Pacific(CP)El Niño and the eastern Pacific(EP)El Niño on the Southern Ocean(SO)mixed layer depth(MLD)during austral winter.The MLD response to the EP El Niño shows a dipole pattern in the South Pacific,namely the MLD dipole,which is the leading El Niño-induced MLD variability in the SO.The tropical Pacific warm sea surface temperature anomaly(SSTA)signal associated with the EP El Niño excites a Rossby wave train propagating southeastward and then enhances the Amundsen Sea low(ASL).This results in an anomalous cyclone over the Amundsen Sea.As a result,the anomalous southerly wind to the west of this anomalous cyclone advects colder and drier air into the southeast of New Zealand,leading to surface cooling through less total surface heat flux,especially surface sensible heat(SH)flux and latent heat(LH)flux,and thus contributing to the mix layer(ML)deepening.The east of the anomalous cyclone brings warmer and wetter air to the southwest of Chile,but the total heat flux anomaly shows no significant change.The warm air promotes the sea ice melting and maintains fresh water,which strengthens stratification.This results in a shallower MLD.During the CP El Niño,the response of MLD shows a separate negative MLD anomaly center in the central South Pacific.The Rossby wave train triggered by the warm SSTA in the central Pacific Ocean spreads to the Amundsen Sea,which weakens the ASL.Therefore,the anomalous anticyclone dominates the Amundsen Sea.Consequently,the anomalous northerly wind to the west of anomalous anticyclone advects warmer and wetter air into the central and southern Pacific,causing surface warming through increased SH,LH,and longwave radiation flux,and thus contributing to the ML shoaling.However,to the east of the anomalous anticyclone,there is no statistically significant impact on the MLD.
基金supported by the National Natural Science Foundation of China(Grant Nos.41830965 and 41905112)the Key Program of the Ministry of Science and Technology of the People’s Republic of China(Grant No.2019YFC0214703)+2 种基金the Hubei Natural Science Foundation(Grant No.2022CFB027)supported by the State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry(Grant No.LAPC-KF-2023-07)the Key Laboratory of Atmospheric Chemistry,China Meteorological Administration(Grant No.2023B08).
文摘Fine particulate matter(PM_(2.5))and ozone(O_(3))double high pollution(DHP)events have occurred frequently over China in recent years,but their causes are not completely clear.In this study,the spatiotemporal distribution of DHP events in China during 2013–20 is analyzed.The synoptic types affecting DHP events are identified with the Lamb–Jenkinson circulation classification method.The meteorological and chemical causes of DHP events controlled by the main synoptic types are further investigated.Results show that DHP events(1655 in total for China during 2013–20)mainly occur over the North China Plain,Yangtze River Delta,Pearl River Delta,Sichuan Basin,and Central China.The occurrence frequency increases by 5.1%during 2013–15,and then decreases by 56.1%during 2015–20.The main circulation types of DHP events are“cyclone”and“anticyclone”,accounting for over 40%of all DHP events over five main polluted regions in China,followed by southerly or easterly flat airflow types,like“southeast”,“southwest”,and“east”.Compared with non-DHP events,DHP events are characterized by static or weak wind,high temperature(20.9℃ versus 23.1℃)and low humidity(70.0%versus 64.9%).The diurnal cycles of meteorological conditions cause PM_(2.5)(0300–1200 LST,Local Standard Time=UTC+8 hours)and O_(3)(1500–2100 LST)to exceed the national standards at different periods of the DHP day.Three pollutant conversion indices further indicate the rapid secondary conversions during DHP events,and thus the concentrations of NO_(2),SO_(2) and volatile organic compounds decrease by 13.1%,4.7%and 4.4%,respectively.The results of this study can be informative for future decisions on the management of DHP events.
基金This work was supported by the National Key R&D Program of China[grant number 2022YFC370110]the National Natural Science Foundation of China[grant numbers 42077194,42061134008,and 42377098]+1 种基金the Shanghai International Science and Technology Partnership Project[grant number 21230780200]the Shanghai General Project[grant number 23ZR1406100].
基金sponsored by the National Natural Science Foundation of China(Grant Nos.41930971,42105061 and 42030604).
文摘This article summarizes the progress made in predictability studies of weather and climate in recent years in China,with a main focus on advances in methods to study error growth dynamics and reduce uncertainties in the forecasting of weather and climate.Specifically,it covers(a)advances in methods to study weather and climate predictability dynamics,especially those in nonlinear optimal perturbation methods associated with initial errors and model errors and their applications to ensemble forecasting and target observations,(b)new data assimilation algorithms for initialization of predictions and novel assimilation approaches to neutralize the combined effects of initial and model errors for weather and climate,(c)applications of new statistical approaches to climate predictions,and(d)studies on meso-to small-scale weather system predictability dynamics.Some of the major frontiers and challenges remaining in predictability studies are addressed in this context.
基金The Second Tibetan Plateau Scientific Expedition and Research(STEP)Program(2019QZKK0105)the Science and Technology Development Fund of the Chinese Academy of Meteorological Sciences(2022KJ022)+2 种基金Special Fund for the Basic Scientific Research Expenses of the Chinese Academy of Meteorological Sciences(2021Z013)the Science and Technology Development Fund of the Chinese Academy of Meteorological Sciences(2022KJ021)Major Projects of the Natural Science Foundation of China(91337000)。
文摘With the extreme drought(flood)event in southern China from July to August in 2022(1999)as the research object,based on the comprehensive diagnosis and composite analysis on the anomalous drought and flood years from July to August in 1961-2022,it is found that there are significant differences in the characteristics of the vertically integrated moisture flux(VIMF)anomaly circulation pattern and the VIMF convergence(VIMFC)anomaly in southern China in drought and flood years,and the VIMFC,a physical quantity,can be regarded as an indicative physical factor for the"strong signal"of drought and flood in southern China.Specifically,in drought years,the VIMF anomaly in southern China is an anticyclonic circulation pattern and the divergence characteristics of the VIMFC are prominent,while those are opposite in flood years.Based on the SST anomaly in the typical draught year of 2022 in southern China and the SST deviation distribution characteristics of abnormal draught and flood years from 1961 to 2022,five SST high impact areas(i.e.,the North Pacific Ocean,Northwest Pacific Ocean,Southwest Pacific Ocean,Indian Ocean,and East Pacific Ocean)are selected via the correlation analysis of VIMFC and the global SST in the preceding months(May and June)and in the study period(July and August)in 1961-2022,and their contributions to drought and flood in southern China are quantified.Our study reveals not only the persistent anomalous variation of SST in the Pacific and the Indian Ocean but also its impact on the pattern of moisture transport.Furthermore,it can be discovered from the positive and negative phase fitting of SST that the SST composite flow field in high impact areas can exhibit two types of anomalous moisture transport structures that are opposite to each other,namely an anticyclonic(cyclonic)circulation pattern anomaly in southern China and the coastal areas of east China.These two types of opposite anomalous moisture transport structures can not only drive the formation of drought(flood)in southern China but also exert its influence on the persistent development of the extreme weather.
基金supported by the National Key Research and Development Program of China(Grant No.2017YFC1501500).
文摘Atmospheric electricity is composed of a series of electric phenomena in the atmosphere.Significant advances in atmospheric electricity research conducted in China have been achieved in recent years.In this paper,the research progress on atmospheric electricity achieved in China during 2019-22 is reviewed focusing on the following aspects:(1)lightning detection and location techniques,(2)thunderstorm electricity,(3)lightning forecasting methods and techniques,(4)physical processes of lightning discharge,(5)high energy emissions and effects of thunderstorms on the upper atmosphere,and(6)the effect of aerosol on lightning.
基金study was supported by the National Natural Science Foundation of China(Grant Nos.42230605 and 41721004).
文摘Studies of the multi-scale climate variability of the Asian monsoon are essential to an advanced understanding of the physical processes of the global climate system.In this paper,the progress achieved in this field is systematically reviewed,with a focus on the past several years.The achievements are summarized into the following topics:(1)the onset of the South China Sea summer monsoon;(2)the East Asian summer monsoon;(3)the East Asian winter monsoon;and(4)the Indian summer monsoon.Specifically,new results are highlighted,including the advanced or delayed local monsoon onset tending to be synchronized over the Arabian Sea,Bay of Bengal,Indochina Peninsula,and South China Sea;the basic features of the record-breaking mei-yu in 2020,which have been extensively investigated with an emphasis on the role of multi-scale processes;the recovery of the East Asian winter monsoon intensity after the early 2000s in the presence of continuing greenhouse gas emissions,which is believed to have been dominated by internal climate variability(mostly the Arctic Oscillation);and the accelerated warming over South Asia,which exceeded the tropical Indian Ocean warming,is considered to be the main driver of the Indian summer monsoon rainfall recovery since 1999.A brief summary is provided in the final section along with some further discussion on future research directions regarding our understanding of the Asian monsoon variability.
基金funded by the China Meteorological Administration (Grant Nos. GYHY 200706005, GYHY 201106023 and GYHY 201206015)
文摘In this paper we present a review of atmospheric chemistry research in China over the period 2006-2010, focusing on tropospheric ozone, aerosol chemistry, and the interactions between trace gases and aerosols in the polluted areas of China. Over the past decade, China has suffered severe photochemical smog and haze pollution, especially in North China, the Yangtze River Delta, and the Pearl River Delta. Much scientific work on atmospheric chemistry and physics has been done to address this large-scale, complex environmental problem. Intensive field experiments, satellite data analyses, and model simulations have shown that air pollution is significantly changing the chemical and physical characters of the natural atmosphere over these parts of China. In addition to strong emissions of primary pollutants, photochemical and heterogeneous reactions play key roles in the formation of complex pollution. More in-depth research is recommended to reveal the formation mechanism of photochemical smog and haze pollution and their climatic effects at the urban, regional, and global scales.
基金supported by the Key Project of the National Natural Science Foundation of China[grant number 42192563]the International Cooperation and Exchange Program of the National Natural Science Foundation of China[grant number 42120104001].
基金supported by the National Natural Science Foundation of China (Grant Nos. 41925024 and 41876021)Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB42000000)+2 种基金Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences (ISEE2021ZD01)Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou) (GML2019ZD0306)Natural Science Foundation of Shandong Province, China (Grant No. ZR2020QD065)
文摘A central Pacific(CP)El Niño event occurred in 2018/19.Previous studies have shown that different mechanisms are responsible for different subtypes of CP El Niño events(CP-I El Niño and CP-II El Niño).By comparing the evolutions of surface winds,ocean temperatures,and heat budgets of the CP-I El Niño,CP-II El Niño,and 2018/19 El Niño,it is illustrated that the subtropical westerly anomalies in the North Pacific,which led to anomalous convergence of Ekman flow and surface warming in the central equatorial Pacific,played an important role in the 2018/19 El Niño event as well as in the CP-II El Niño.Although the off-equatorial forcing played a vital role,it is found that the equatorial forcing acted as a driving(damping)term in boreal spring(summer)of the 2018/19 El Niño.The 2018/19 El Niño provides a timely and vivid example that helps illustrate the proposed mechanism of the CP El Niño,which could be leveraged to improve El Niño predictability.
基金funded by the National Key R&D Program of China(Grant No.2018YFC0213902,2019YFC0214605,2016YFC0202000)the open project of the Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration,Nanjing University of Information Science and Technology(KDW 1803)+1 种基金the Scientific and Technological Innovation Team Project of Guangzhou Joint Research Center of Atmospheric Sciences,China Meteorological Administration(Grant No.201704)the Science and Technology Research Project of Guangdong Meteorological Bureau(Grant No.GRMC2018M01)。
文摘Mole fractions of atmospheric CO2(XCO2)have been continuously measured from October 2014 to March 2016 at the Guangzhou Panyu Atmospheric Composition Site(23.00°N,113.21°E;140 m MSL)in the Pearl River Delta(PRD)region using a cavity ring-down spectrometer.Approximately 66.63%,19.28%,and 14.09%of the observed values were filtered as background,pollutant source,and sink due to biospheric uptake,respectively,by applying a robust local regression procedure.Their corresponding mean values were 424.12±10.12 ppm(×10-6 mol mol-1),447.83±13.63 ppm,and 408.83±7.75 ppm.The background XCO2 levels were highest in spring and winter,moderate in autumn,and lowest in summer.The diurnal XCO2 was at a minimum from 1400-1600 LST(Local Standard Time)and a maximum at 0500 LST the next day.The increase of XCO2 in spring and summer was mainly associated with polluted air masses from south coastal Vietnam,the South China Sea,and the southeast Pearl River Estuary.With the exception of summer,airflow primarily from marine regions southeast of Taiwan that passed over the Pearl River Estuary had a greater impact on XCO2,suggesting an important potential source region.
基金RADARSAT-1 data were obtained under the NASA RADARSAT ADRO-2 Program (Project RADARSAT-0011-0071) and processed by the Alaska Satellite FacilityThe ASAR images were provided by the European Space Agency under ENVISAT Projects 141 and 6133
文摘In the satellite synthetic aperture radar(SAR) images of the Bohai Sea and Huanghai Sea,the authors observe sea surface imprints of wave-like patterns with an average wavelength of 3.8 km.Comparing SAR observations with sea surface wind fields and surface weather maps,the authors find that the occurrence of the wave-like phenomena is associated with the passing of atmospheric front.The authors define the waves as atmospheric frontal gravity waves.The dynamical parameters of the wave packets are derived from statistics of 9 satellite SAR images obtained from 2002 to 2008.A two-dimensional linear physical wave model is used to analyze the generation mechanism of the waves.The atmospheric frontal wave induced wind variation across the frontal wave packet is compared with wind retrievals from the SAR images.The CMOD-5(C-band scatterometer ocean geophysical model function) is used for SAR wind retrievals VV(transmitted vertical and received vertical) for ENVISAT and HH(transmitted horizontally and received horizontally) for RADARSAT-1.A reasonable agreement between the analytical solution and the SAR observation is reached.This new SAR frontal wave observation adds to the school of SAR observations of sea surface imprints of AGWs including island lee waves,coastal lee waves,and upstream Atmospheric Gravity Waves(AGW).
基金supported by the National Natural Science Foundation of China (Grant No. 42192564)Guangdong Major Project of Basic and Applied Basic Research (Grant No. 2020B0301030004)the Ministry of Science and Technology of the People's Republic of China (Grant No.2020YFA0608802)。
文摘El Ni?o–Southern Oscillation(ENSO) exhibits a distinctive phase-locking characteristic, first expressed during its onset in boreal spring, developing during summer and autumn, reaching its peak towards winter, and decaying over the next spring. Several studies have demonstrated that this feature arises as a result of seasonal variation in the growth rate of ENSO as expressed by the sea surface temperature(SST). The bias towards simulating the phase locking of ENSO by many state-of-the-art climate models is also attributed to the unrealistic depiction of the growth rate. In this study, the seasonal variation of SST growth rate in the Ni?o-3.4 region(5°S–5°N, 120°–170°W) is estimated in detail based on the mixed layer heat budget equation and recharge oscillator model during 1981–2020. It is suggested that the consideration of a variable mixed layer depth is essential to its diagnostic process. The estimated growth rate has a remarkable seasonal cycle with minimum rates occurring in spring and maximum rates evident in autumn. More specifically, the growth rate derived from the meridional advection(surface heat flux) is positive(negative) throughout the year. Vertical diffusion generally makes a negative contribution to the evolution of growth rate and the magnitude of vertical entrainment represents the smallest contributor. Analysis indicates that the zonal advective feedback is regulated by the meridional immigration of the intertropical convergence zone, which approaches its southernmost extent in February and progresses to its northernmost location in September, and dominates the seasonal variation of the SST growth rate.
基金supported by the National Natural Science Foundation of China (Grant No. 41888101)。
文摘One of the basic characteristics of Earth's modern climate is that the Northern Hemisphere(NH) is climatologically warmer than the Southern Hemisphere(SH). Here, model performances of this basic state are examined using simulation results from 26 CMIP6 models. Results show that the CMIP6 models underestimate the contrast in interhemispheric surface temperatures on average(0.8 K for CMIP6 mean versus 1.4 K for reanalysis data mean), and that there is a large intermodel spread, ranging from -0.7 K to 2.3 K. A box model energy budget analysis shows that the contrast in interhemispheric shortwave absorption at the top of the atmosphere, the contrast in interhemispheric greenhouse trapping, and the crossequatorial northward ocean heat transport, are all underestimated in the multimodel mean. By examining the intermodel spread, we find intermodel biases can be tracked back to biases in midlatitude shortwave cloud forcing in AGCMs. Models with a weaker interhemispheric temperature contrast underestimate the shortwave cloud reflection in the SH but overestimate the shortwave cloud reflection in the NH, which are respectively due to underestimation of the cloud fraction over the SH extratropical ocean and overestimation of the cloud liquid water content over the NH extratropical continents.Models that underestimate the interhemispheric temperature contrast exhibit larger double ITCZ biases, characterized by excessive precipitation in the SH tropics. Although this intermodel spread does not account for the multimodel ensemble mean biases, it highlights that improving cloud simulation in AGCMs is essential for simulating the climate realistically in coupled models.
基金supported by the National Natural Science Foundation of China(Grant Nos.42192552,42192551,42150710531,42175016,and 42075072)the Shanghai Typhoon Research Fund(Grant No.TFJJ202207)the Basic Research Fund of CAMS(Grant No.2023Y010)。
文摘This study investigated the effects of upper-level descending inflow(ULDI)associated with inner-eyewall convection on the formation of the moat in tropical cyclones(TCs)with secondary eyewall formation(SEF).In our numerical experiments,a clear moat with SEF occurred in TCs with a significant ULDI,while no SEF occurred in TCs without a significant ULDI.The eyewall convection developed more vigorously in the control run.A ULDI occurred outside the inner-eyewall convection,where it was symmetrically unstable.The ULDI was initially triggered by the diabatic warming released by the inner eyewall and later enhanced by the cooling below the anvil cloud.The ULDI penetrated the outer edge of the inner eyewall with relatively dry air and prevented excessive solid-phase hydrometeors from being advected further outward.It produced extensive sublimation cooling of falling hydrometeors between the eyewall and the outer convection.The sublimation cooling resulted in negative buoyancy and further induced strong subsidence between the eyewall and the outer convection.As a result,a clear moat was generated.Development of the moat in the ongoing SEF prevented the outer rainband from moving farther inward,helping the outer rainband to symmetrize into an outer eyewall.In the sensitivity experiment,no significant ULDI formed since the eyewall convection was weaker,and the eyewall anvil developed relatively lower,meaning the formation of a moat and thus an outer eyewall was less likely.This study suggests that a better-represented simulation of inner-eyewall convective structures and distribution of the solid-phase hydrometeors is important to the prediction of SEF.
基金supported by the National Natural Science Foundation of China(Grant Nos.U2242203,42275006,and 42030604)the Guangdong Basic and Applied Basic Research Foundation(2023A1515011705)the Science and Technology Research Project for Society of Foshan(2120001008761).
文摘As demonstrated in the first part of this study(Part I),wind-shift boundaries routinely form along the west coast of the Pearl River Delta due to the land-sea contrast of a“trumpet”shape coastline in the summer monsoon season.Through multiple numerical simulations,this article(Part II)aims to examine the roles of the trumpet-shaped coastline in the mesovortex genesis during the 1 June 2020 tornadic event.The modeling reproduced two mesovortices that are in close proximity in time and space to the realistic mesovortices.In addition to the modeled mesovortex over the triple point where strong ambient vertical vorticity was located,another mesovortex originated from an enhanced discrete vortex along an airmass boundary via shear instability.On the fine-scale storm morphology,finger-like echoes preceding hook echoes were also reproduced around the triple point.Results from sensitivity experiments suggest that the unique topography plays an essential role in modifying the vorticity budget during the mesovortex formation.While there is a high likelihood of an upcoming storm evolving into a rotating storm over the triple point,the simulation's accuracy is sensitive to the local environmental details and storm dynamics.The strengths of cold pool surges from upstream storms may influence the stretching of low-level vertically oriented vortex and thus the wrap-up of finger-like echoes.These findings suggest that the trumpet-shaped coastline is an important component of mesovortex production during the active monsoon season.It is hoped that this study will increase the situational awareness for forecasters regarding regional non-mesocyclone tornadic environments.
基金The National Key R&D Program of China under contract No.2022YFC3104805the National Natural Science Foundation of China under contract Nos 42276019,41706025 and 41976200+4 种基金the Innovation Team Plan for Universities in Guangdong Province under contract No.2019KCXTF021the First-class Discipline Plan of Guangdong Province under contract Nos 080503032101and 231420003the Program for Scientific Research Start-up Funds of Guangdong Ocean University under contract No.060302032106the Open Fund Project of Key Laboratory of Marine Environmental Information Technology(2019)Ministry of Natural Resources。
文摘This study aims to investigate characteristics of continental shelf wave(CSW)on the northwestern continental shelf of the South China Sea(SCS)induced by winter storms in 2021.Mooring and cruise observations,tidal gauge data at stations Hong Kong,Zhapo and Qinglan and sea surface wind data from January 1 to February 28,2021 are used to examine the relationship between along-shelf wind and sea level fluctuation.Two events of CSWs driven by the along-shelf sea surface wind are detected from wavelet spectra of tidal gauge data.The signals are triply peaked at periods of 56 h,94 h and 180 h,propagating along the coast with phase speed ranging from 6.9 m/s to18.9 m/s.The dispersion relation shows their property of the Kelvin mode of CSW.We develop a simple method to estimate amplitude of sea surface fluctuation by along-shelf wind.The results are comparable with the observation data,suggesting it is effective.The mode 2 CSWs fits very well with the mooring current velocity data.The results from rare current help to understand wave-current interaction in the northwestern SCS.
基金the National Key R&D Program of China(Grant No.2022YFC3003902)the National Natural Science Foundation of China(Grant No.42075146).
文摘This work uses cloud-resolving simulations to study mock-Walker cells driven by a specified sea surface temperature(SST).The associated precipitation in the mock-Walker cells exhibits three different modes,including a single peak of precipitation over the SST maximum(mode 1),symmetric double peaks of precipitation straddling the SST maximum(mode 2),and a single peak of precipitation on one side of the SST maximum(mode 3).The three modes are caused by three distinct convective activity center migration traits.Analyses indicate that the virtual effect of water vapor plays an important role in differentiating the three modes.When the SST gradient is large,the virtual effect may be strong enough to overcome the temperature effect,generating a low-level low-pressure anomaly below the ascending branch of the Walker cell off the center.The results here highlight the importance of the virtual effect of water vapor and its interaction with convection and large-scale circulation in the Walker circulation.
文摘Seasonal forecasting of the Indian summer monsoon by dynamically downscaling the CFSv2 output using a high resolution WRF model over the hindcast period of 1982-2008 has been performed in this study. The April start ensemble mean of the CFSv2 has been used to provide the initial and lateral boundary conditions for driving the WRF. The WRF model is integrated from 1st May through 1st October for each monsoon season. The analysis suggests that the WRF exhibits potential skill in improving the rainfall skill as well as the seasonal pattern and minimizes the meteorological errors as compared to the parent CFSv2 model. The rainfall pattern is simulated quite closer to the observation (IMD) in the WRF model over CFSv2 especially over the significant rainfall regions of India such as the Western Ghats and the central India. Probability distributions of the rainfall show that the rainfall is improved with the WRF. However, the WRF simulates copious amounts of rainfall over the eastern coast of India. Surface and upper air meteorological parameters show that the WRF model improves the simulation of the lower level and upper-level winds, MSLP, CAPE and PBL height. The specific humidity profiles show substantial improvement along the vertical column of the atmosphere which can be directly related to the net precipitable water. The CFSv2 underestimates the specific humidity along the vertical which is corrected by the WRF model. Over the Bay of Bengal, the WRF model overestimates the CAPE and specific humidity which may be attributed to the copious amount of rainfall along the eastern coast of India. Residual heating profiles also show that the WRF improves the thermodynamics of the atmosphere over 700 hPa and 400 hPa levels which helps in improving the rainfall simulation. Improvement in the land surface fluxes is also witnessed in the WRF model.