We performed spectral analyses on the ages of 89 well-dated major geological events of the last 260 Myr from the recent geologic literature. These events include times of marine and non-marine extinctions,major ocean-...We performed spectral analyses on the ages of 89 well-dated major geological events of the last 260 Myr from the recent geologic literature. These events include times of marine and non-marine extinctions,major ocean-anoxic events, continental flood-basalt eruptions, sea-level fluctuations, global pulses of intraplate magmatism, and times of changes in seafloor-spreading rates and plate reorganizations. The aggregate of all 89 events shows ten clusters in the last 260 Myr, spaced at an average interval of ~ 26.9 Myr, and Fourier analysis of the data yields a spectral peak at 27.5 Myr at the ≥96% confidence level. A shorter period of ~ 8.9 Myr may also be significant in modulating the timing of geologic events.Our results suggest that global geologic events are generally correlated, and seem to come in pulses with an underlying ~ 27.5-Myr cycle. These cyclic pulses of tectonics and climate change may be the result of geophysical processes related to the dynamics of plate tectonics and mantle plumes, or might alternatively be paced by astronomical cycles associated with the Earth’s motions in the Solar System and the Galaxy.展开更多
Spectral analyses of past relative sea-level oscillations as represented by the ages of 57 Phanerozoic(the last 545 Myr)stratigraphic sequence boundaries from the Canadian Arctic show a strong spectral peak at 32 Myr(...Spectral analyses of past relative sea-level oscillations as represented by the ages of 57 Phanerozoic(the last 545 Myr)stratigraphic sequence boundaries from the Canadian Arctic show a strong spectral peak at 32 Myr(>99.9%confidence).These findings concur with previous reports of significant cycles with periods of around 30 Myr in various records of fluctuations of sea level,and in potentially related episodes of tectonism,volcanism,climate,and biotic extinctions.Sequence boundaries commonly coincide with stage boundaries based on biostratigraphy,and are correlated with episodes of extinction and times of flood-basalt volcanism.The connection between tectonics and sea-level variations may come from changes in rates of ocean-floor spreading and subduction,intraplate stresses from plate-reorganizations,and pulsations of hotspot volcanism.These coordinated periodic fluctuations in tectonics,sea level and climate may be modulated by cyclical activity in the Earth’s mantle,although some pacing by astronomical cycles is suspected.展开更多
Introduction:The Chesapeake Bay was once renowned for expansive meadows of submerged aquatic vegetation(SAV).However,only 10%of the original meadows survive.Future restoration effortswill be complicated by acceleratin...Introduction:The Chesapeake Bay was once renowned for expansive meadows of submerged aquatic vegetation(SAV).However,only 10%of the original meadows survive.Future restoration effortswill be complicated by accelerating climate change,including physiological stressors such as a predicted mean temperature increase of 2-6℃and a 50-160%increase in CO_(2)concentrations.Outcomes:As the Chesapeake Bay begins to exhibit characteristics of a subtropical estuary,summer heat waves will become more frequent and severe.Warming alone would eventually eliminate eelgrass(Zostera marina)from the region.It will favor native heat-tolerant species such as widgeon grass(Ruppia maritima)while facilitating colonization by non-native seagrasses(e.g.,Halodule spp.).Intensifying human activity will also fuel coastal zone acidification and the resulting high CO_(2)/low pH conditions may benefit SAV via a“CO_(2)fertilization effect.”Discussion:Acidification is known to offset the effects of thermal stress and may have similar effects in estuaries,assuming water clarity is sufficient to support CO_(2)-stimulated photosynthesis and plants are not overgrown by epiphytes.However,coastal zone acidification is variable,driven mostly by local biological processes that may or may not always counterbalance the effects of regional warming.This precarious equipoise between two forces-thermal stress and acidification-will be critically important because it may ultimately determine the fate of cool-water plants such as Zostera marina in the Chesapeake Bay.Conclusion:The combined impacts of warming,coastal zone acidification,water clarity,and overgrowth of competing algae will determine the fate of SAV communities in rapidly changing temperate estuaries.展开更多
The Eocene-Oligocene transition(EOT)marked a rapid global cooling event,often considered as the beginning of the modern icehouse world.Influenced by various factors,including tectonic activity and paleogeographic sett...The Eocene-Oligocene transition(EOT)marked a rapid global cooling event,often considered as the beginning of the modern icehouse world.Influenced by various factors,including tectonic activity and paleogeographic settings,the terrestrial records indicate a diverse response of fauna and vegetation to this global event.We examined nine macrofossil assemblages from seven fossil localities on the southeastern margin of the Tibetan Plateau and from the mid-latitudinal Europe ranging from the latest Bartonian and Priabonian(37.71-33.9 Ma)to the Rupelian(33.9-27.82 Ma).Our aims were to trace and compare the vegetation history of both regions in the late Eocene and early Oligocene.The results show that both regions experienced changes in vegetation composition in response to climate change,characterized by a decrease in the percentages of broad-leaved evergreen elements and distinctive changes in general vegetation types.A general change in the overall vegetation type from subtropical broad-leaved evergreen forests in the late Eocene to temperate broad-leaved mixed deciduous evergreen forests,or mixed mesophytic forests,in the early Oligocene is recognized in both regions.The results indicate a clear change in leaf architecture,leaf margin states,and secondary venation types in the mid-latitudinal Europe,while the results from the southeastern margin of the Tibetan Plateau show a distinct reduction in leaf size.Our data suggest that both global and regional factors played key roles in shaping the vegetation in the two regions.展开更多
基金Research was partly funded by an NYU Research Challenge Fund Grant。
文摘We performed spectral analyses on the ages of 89 well-dated major geological events of the last 260 Myr from the recent geologic literature. These events include times of marine and non-marine extinctions,major ocean-anoxic events, continental flood-basalt eruptions, sea-level fluctuations, global pulses of intraplate magmatism, and times of changes in seafloor-spreading rates and plate reorganizations. The aggregate of all 89 events shows ten clusters in the last 260 Myr, spaced at an average interval of ~ 26.9 Myr, and Fourier analysis of the data yields a spectral peak at 27.5 Myr at the ≥96% confidence level. A shorter period of ~ 8.9 Myr may also be significant in modulating the timing of geologic events.Our results suggest that global geologic events are generally correlated, and seem to come in pulses with an underlying ~ 27.5-Myr cycle. These cyclic pulses of tectonics and climate change may be the result of geophysical processes related to the dynamics of plate tectonics and mantle plumes, or might alternatively be paced by astronomical cycles associated with the Earth’s motions in the Solar System and the Galaxy.
基金partially funded by an NYU Research Challenge Grant。
文摘Spectral analyses of past relative sea-level oscillations as represented by the ages of 57 Phanerozoic(the last 545 Myr)stratigraphic sequence boundaries from the Canadian Arctic show a strong spectral peak at 32 Myr(>99.9%confidence).These findings concur with previous reports of significant cycles with periods of around 30 Myr in various records of fluctuations of sea level,and in potentially related episodes of tectonism,volcanism,climate,and biotic extinctions.Sequence boundaries commonly coincide with stage boundaries based on biostratigraphy,and are correlated with episodes of extinction and times of flood-basalt volcanism.The connection between tectonics and sea-level variations may come from changes in rates of ocean-floor spreading and subduction,intraplate stresses from plate-reorganizations,and pulsations of hotspot volcanism.These coordinated periodic fluctuations in tectonics,sea level and climate may be modulated by cyclical activity in the Earth’s mantle,although some pacing by astronomical cycles is suspected.
基金This review was adapted from the author’s contributions to the Chesapeake Bay Submerged Aquatic Vegetation(SAV)Habitat Requirements and Restoration Targets:A Third Technical Synthesis funded by the U.S.Environmental Protection Agency through a Chesapeake Bay Implementation Grant authorized by section 117 of the Clean Water Act.The authors acknowledge the assistance of Brooke Laundry(MDDNR)and numerous members of the technical synthesis workgroup(2014-2017).
文摘Introduction:The Chesapeake Bay was once renowned for expansive meadows of submerged aquatic vegetation(SAV).However,only 10%of the original meadows survive.Future restoration effortswill be complicated by accelerating climate change,including physiological stressors such as a predicted mean temperature increase of 2-6℃and a 50-160%increase in CO_(2)concentrations.Outcomes:As the Chesapeake Bay begins to exhibit characteristics of a subtropical estuary,summer heat waves will become more frequent and severe.Warming alone would eventually eliminate eelgrass(Zostera marina)from the region.It will favor native heat-tolerant species such as widgeon grass(Ruppia maritima)while facilitating colonization by non-native seagrasses(e.g.,Halodule spp.).Intensifying human activity will also fuel coastal zone acidification and the resulting high CO_(2)/low pH conditions may benefit SAV via a“CO_(2)fertilization effect.”Discussion:Acidification is known to offset the effects of thermal stress and may have similar effects in estuaries,assuming water clarity is sufficient to support CO_(2)-stimulated photosynthesis and plants are not overgrown by epiphytes.However,coastal zone acidification is variable,driven mostly by local biological processes that may or may not always counterbalance the effects of regional warming.This precarious equipoise between two forces-thermal stress and acidification-will be critically important because it may ultimately determine the fate of cool-water plants such as Zostera marina in the Chesapeake Bay.Conclusion:The combined impacts of warming,coastal zone acidification,water clarity,and overgrowth of competing algae will determine the fate of SAV communities in rapidly changing temperate estuaries.
基金supported by the National Key R&D Program of China(Grant No.2022YFF0800800)the National Natural Science Foundation of China(Grant Nos.42072024&42320104005)the Sino-German(CSC-DAAD)Postdoc Scholarship Program(Grant No.57607866)。
文摘The Eocene-Oligocene transition(EOT)marked a rapid global cooling event,often considered as the beginning of the modern icehouse world.Influenced by various factors,including tectonic activity and paleogeographic settings,the terrestrial records indicate a diverse response of fauna and vegetation to this global event.We examined nine macrofossil assemblages from seven fossil localities on the southeastern margin of the Tibetan Plateau and from the mid-latitudinal Europe ranging from the latest Bartonian and Priabonian(37.71-33.9 Ma)to the Rupelian(33.9-27.82 Ma).Our aims were to trace and compare the vegetation history of both regions in the late Eocene and early Oligocene.The results show that both regions experienced changes in vegetation composition in response to climate change,characterized by a decrease in the percentages of broad-leaved evergreen elements and distinctive changes in general vegetation types.A general change in the overall vegetation type from subtropical broad-leaved evergreen forests in the late Eocene to temperate broad-leaved mixed deciduous evergreen forests,or mixed mesophytic forests,in the early Oligocene is recognized in both regions.The results indicate a clear change in leaf architecture,leaf margin states,and secondary venation types in the mid-latitudinal Europe,while the results from the southeastern margin of the Tibetan Plateau show a distinct reduction in leaf size.Our data suggest that both global and regional factors played key roles in shaping the vegetation in the two regions.