期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Tung Tree(Vernicia fordii) Genome Provides A Resource for Understanding Genome Evolution and Improved Oil Production 被引量:7
1
作者 Lin Zhang Meilan Liu +21 位作者 Hongxu Long Wei Dong Asher Pasha Eddi Esteban Wenying Li Xiaoming Yang Ze Li Aixia Song Duo Ran Guang Zhao Yanling Zeng Hao Chen Ming Zou Jingjing Li Fan Liang Meili Xie Jiang Hu Depeng Wang Heping Cao Nicholas J.Provart Liangsheng Zhang Xiaofeng Tan 《Genomics, Proteomics & Bioinformatics》 SCIE CAS CSCD 2019年第6期558-575,共18页
Tung tree(Vernicia fordii) is an economically important woody oil plant that produces tung oil rich in eleostearic acid. Here, we report a high-quality chromosome-scale genome sequence of tung tree. The genome sequenc... Tung tree(Vernicia fordii) is an economically important woody oil plant that produces tung oil rich in eleostearic acid. Here, we report a high-quality chromosome-scale genome sequence of tung tree. The genome sequence was assembled by combining Illumina short reads, Pacific Biosciences single-molecule real-time long reads, and Hi-C sequencing data. The size of tung tree genome is 1.12 Gb, with 28,422 predicted genes and over 73% repeat sequences. The V. fordii underwent an ancient genome triplication event shared by core eudicots but no further wholegenome duplication in the subsequent ca. 34.55 million years of evolutionary history of the tung tree lineage. Insertion time analysis revealed that repeat-driven genome expansion might have arisen as a result of long-standing long terminal repeat retrotransposon bursts and lack of efficient DNA deletion mechanisms. The genome harbors 88 resistance genes encoding nucleotide-binding sites;17 of these genes may be involved in early-infection stage of Fusarium wilt resistance. Further, 651 oil-related genes were identified, 88 of which are predicted to be directly involved in tung oil biosynthesis. Relatively few phosphoenolpyruvate carboxykinase genes, and synergistic effects between transcription factors and oil biosynthesis-related genes might contribute to the high oil content of tung seed. The tung tree genome constitutes a valuable resource for understanding genome evolution, as well as for molecular breeding and genetic improvements for oil production. 展开更多
关键词 Tung TREE GENOME Tung OIL GENOME evolution Electronic fluorescent PICTOGRAPHIC BROWSER OIL BIOSYNTHESIS
原文传递
Analysis of Gene Expression Patterns during Seed Coat Development in Arabidopsis 被引量:2
2
作者 Gillian Dean YongGuo Cao +7 位作者 DaoQuan Xiang Nicholas J. Provart Larissa Ramsay Abdul Ahad Rick White Gopalan Selvaraj Raju Datla George Haughn 《Molecular Plant》 SCIE CAS CSCD 2011年第6期1074-1091,共18页
The seed coat is important for embryo protection, seed hydration, and dispersal. Seed coat composition is also of interest to the agricultural sector, since it impacts the nutritional value for humans and livestock al... The seed coat is important for embryo protection, seed hydration, and dispersal. Seed coat composition is also of interest to the agricultural sector, since it impacts the nutritional value for humans and livestock alike. Although some seed coat genes have been identified, the developmental pathways controlling seed coat development are not completely elucidated, and a global genetic program associated with seed coat development has not been reported. This study uses a combination of genetic and genomic approaches in Arabidopsis thaliana to begin to address these knowledge gaps. Seed coat development is a complex process whereby the integuments of the ovule differentiate into specialized cell types. In Arabidopsis, the outermost layer of cells secretes mucilage into the apoplast and develops a secondary cell wall known as a columella. The layer beneath the epidermis, the palisade, synthesizes a secondary cell wall on its inner tangential side. The innermost layer (the pigmented layer or endothelium) produces proanthocyanidins that condense into tannins and oxidize, giving a brown color to mature seeds. Genetic separation of these cell layers was achieved using the ap2-7 and tt16-1 mutants, where the epidermis/palisade and the endothelium do not develop respectively. This genetic ablation was exploited to examine the developmental programs of these cell types by isolating and collecting seed coats at key tran- sitions during development and performing global gene expression analysis. The data indicate that the developmental programs of the epidermis and the pigmented layer proceed relatively independently. Global expression datasets that can be used for identification of new gene candidates for seed coat development were generated. These dataset provide a comprehensive expression profile for developing seed coats in Arabidopsis, and should provide a useful resource and reference for other seed systems. 展开更多
关键词 Seed coat MICROARRAY APETALA2 TRANSPARENT TESTA16 mucilage PECTIN secondary cell wall pigmentedlayer proanthocyanidin.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部