In this study, shea residues (<em>Vitellaria paradoxa</em>) dumped in the wild by the units processing almonds into butter were used in the production of activated carbons. Shea nut shells harvested in the...In this study, shea residues (<em>Vitellaria paradoxa</em>) dumped in the wild by the units processing almonds into butter were used in the production of activated carbons. Shea nut shells harvested in the locality of Baktchoro, West Tandjile Division of Chad were used as a precursor for the preparation of activated carbons by chemical activation with phosphoric acid (H<sub>3</sub>PO<sub>4</sub>) and sulphuric acid (H<sub>2</sub>SO<sub>4</sub>). Central Composite Design (CCD) was used to optimize the preparation conditions, and the factors used were concentration of activating agent (1 - 5 M), carbonization temperature (400<span style="white-space:nowrap;"><span style="white-space:nowrap;">°</span></span>C - 700<span style="white-space:nowrap;"><span style="white-space:nowrap;">°</span></span>C) and residence time (30 - 120 min). The studies showed that at optimal conditions the yield was 51.45% and 42.35%, while the iodine number (IN) was 709.45 and 817.36 mg/g for CAK-P (phosphoric acid activated carbon) and CAK-S (sulphuric acid activated carbon) respectively. These two activated carbons (ACs) which were distinguished by their considerable iodine number, were variously characterized by elementary analysis, pH at the point of zero charge (pHpzc), bulk density, moisture content, Boehm titration, Fourier transform infrared spectroscopy, BET adsorption and scanning electron microscopy. These analyses revealed the acidic and microporous nature of CAK-P and CAK-S carbons, which have a specific microporous surface area of 522.55 and 570.65 m<sup>2</sup>·g<sup><span style="white-space:nowrap;"><span style="white-space:nowrap;">−</span></span>1</sup> respectively.展开更多
This paper presents response surface methodology (RSM) as an efficient approach for modeling and optimizing TiO2 nanoparticles preparation via co-precipitation for dye-sensitized solar cell (DSSC) perfor- mance. T...This paper presents response surface methodology (RSM) as an efficient approach for modeling and optimizing TiO2 nanoparticles preparation via co-precipitation for dye-sensitized solar cell (DSSC) perfor- mance. Titanium (IV) bis-(acetylacetonate) di-isopropoxide (DIPBAT), isopropanol and water were used as precursor, solvent and co-solvent, respectively. Molar ratio of water, aging temperature and calcina- tion temperature as preparation factors with main and interaction effects on particle characteristics and performances were investigated, Particle characteristics in terms of primary and secondary sizes, crys- tal orientation and morphology were determined by X-ray diffractometry (XRD) and scanning electron microscopy (SEM). Band gap energy and power conversion efficiency of DSSCs were used for perfor- mance studies. According to analysis of variance (ANOVA) in response surface methodology (RSM), all three independent parameters were statistically significant and the final model was accurate. The model predicted maximum power conversion efficiency (0.14%) under the optimal condition of molar ratio of DIPBAT-to-isopropanol-to-water of 1 : 10:500, aging temperature of 36 C and calcination temperature of 400 ℃. A second set of data was adopted to validate the model at optimal conditions and was found to be 0.14 ± 0.015%, which was very close to the predicted value. This study proves the reliability of the model in identi(ving the optimal condition for maximum performance.展开更多
文摘In this study, shea residues (<em>Vitellaria paradoxa</em>) dumped in the wild by the units processing almonds into butter were used in the production of activated carbons. Shea nut shells harvested in the locality of Baktchoro, West Tandjile Division of Chad were used as a precursor for the preparation of activated carbons by chemical activation with phosphoric acid (H<sub>3</sub>PO<sub>4</sub>) and sulphuric acid (H<sub>2</sub>SO<sub>4</sub>). Central Composite Design (CCD) was used to optimize the preparation conditions, and the factors used were concentration of activating agent (1 - 5 M), carbonization temperature (400<span style="white-space:nowrap;"><span style="white-space:nowrap;">°</span></span>C - 700<span style="white-space:nowrap;"><span style="white-space:nowrap;">°</span></span>C) and residence time (30 - 120 min). The studies showed that at optimal conditions the yield was 51.45% and 42.35%, while the iodine number (IN) was 709.45 and 817.36 mg/g for CAK-P (phosphoric acid activated carbon) and CAK-S (sulphuric acid activated carbon) respectively. These two activated carbons (ACs) which were distinguished by their considerable iodine number, were variously characterized by elementary analysis, pH at the point of zero charge (pHpzc), bulk density, moisture content, Boehm titration, Fourier transform infrared spectroscopy, BET adsorption and scanning electron microscopy. These analyses revealed the acidic and microporous nature of CAK-P and CAK-S carbons, which have a specific microporous surface area of 522.55 and 570.65 m<sup>2</sup>·g<sup><span style="white-space:nowrap;"><span style="white-space:nowrap;">−</span></span>1</sup> respectively.
基金the Malaysian Ministry of Higher Education(MOHE)for providing the financial support through Fundamental Research Grant Scheme(UKM-KK-02FRGS0199-2010)
文摘This paper presents response surface methodology (RSM) as an efficient approach for modeling and optimizing TiO2 nanoparticles preparation via co-precipitation for dye-sensitized solar cell (DSSC) perfor- mance. Titanium (IV) bis-(acetylacetonate) di-isopropoxide (DIPBAT), isopropanol and water were used as precursor, solvent and co-solvent, respectively. Molar ratio of water, aging temperature and calcina- tion temperature as preparation factors with main and interaction effects on particle characteristics and performances were investigated, Particle characteristics in terms of primary and secondary sizes, crys- tal orientation and morphology were determined by X-ray diffractometry (XRD) and scanning electron microscopy (SEM). Band gap energy and power conversion efficiency of DSSCs were used for perfor- mance studies. According to analysis of variance (ANOVA) in response surface methodology (RSM), all three independent parameters were statistically significant and the final model was accurate. The model predicted maximum power conversion efficiency (0.14%) under the optimal condition of molar ratio of DIPBAT-to-isopropanol-to-water of 1 : 10:500, aging temperature of 36 C and calcination temperature of 400 ℃. A second set of data was adopted to validate the model at optimal conditions and was found to be 0.14 ± 0.015%, which was very close to the predicted value. This study proves the reliability of the model in identi(ving the optimal condition for maximum performance.