In this study,a route for simultaneous mineralization of CO2 and production of titanium dioxide and ammonium alum,and microporous silicon dioxide from titanium-bearing blast furnace slag(TBBF slag)was proposed,which i...In this study,a route for simultaneous mineralization of CO2 and production of titanium dioxide and ammonium alum,and microporous silicon dioxide from titanium-bearing blast furnace slag(TBBF slag)was proposed,which is comprised of(NH4)2 S04 roasting,acid leaching,ammonium alum crystallization,silicic acid flocculation and Ti hydrolysis.The effects of relevant process parameters were systematically investigated.The re sults showed that under the optimal roasting and leaching conditions about 85%of titanium and 84.6%of aluminum could be extracted while only 30%of silicon entered the leachate.84%of Al^3+was crystallized from the leachate in the form of ammonium aluminum sulfate dodecahydrate with a purity up to 99.5 wt%.About 85%of the soluble silicic acid was flocculated with the aid of secondary alcohol polyoxyethylene ether 9(AEO-9)to yield a microporous SiO2 material(97.4 wt%)from the crystallized mother liquor.The Al-and Si-depleted solution was then hydrolyzed to generate a titanium dioxide(99.1 wt%)with uniform particle size distribution.It was figured out that approximately 146 kg TiO2 could be produced from 1000 kg of TBBF slag.Therefore,the improved process is a promising method for industrial application.展开更多
Dynamic performance on solids flow with water in deviated tubing is essential for the reliability of pump and normal operation of horizontal and directional wells.Compared with coal-water flow in vertical tubing and s...Dynamic performance on solids flow with water in deviated tubing is essential for the reliability of pump and normal operation of horizontal and directional wells.Compared with coal-water flow in vertical tubing and sand-oil flow with high production in deviated tubing,solids deposition with water shows obvious non-symmetric distributions in deviated tubing from simulations and experiments.The mathematical model of two phase flow was developed under coupling conditions of deviated tubing,low flow rate and viscosity based on the kinetic theory of granular flow and first-order discrete scheme.The results show that solid-water stratified flow in deviated tubing can be divided into two zones of suspension bed and the moving bed throughout the flow field.The solid flowing velocity with water is negative and particles slide down at the bottom of moving bed zone.The process of solids flow with water in deviated tubing will produce pressure loss and consume the kinetic energy.The thickness of deposited layer and the flowing velocity of solids flow downward with water at the moving bed zone enhance with the decreased inlet flow rate and the increased particle size,tubing inside diameter(ID)and inclination angle.Solids are easier into suspension from the upper part of moving bed zone to suspension bed zone and more solid particles flow with water towards the tubing outlet with the increase of inlet flowing velocity.The decision is made to reduce the screen width,tubing ID and inclination angle to maintain to be greater than critical deposition velocity in order to prevent solids settling.And it provides the theoretical basis and technical reserves for solid control and offers an effective approach to enhance tubing cleaning in deviated strings.展开更多
In this paper, the gelation mechanism of erythromycin ethylsuccinate(EES) during crystallization is investigated for the first time. The generated semisolid gel-like phase exhibited a 3D fibrillar network morphology a...In this paper, the gelation mechanism of erythromycin ethylsuccinate(EES) during crystallization is investigated for the first time. The generated semisolid gel-like phase exhibited a 3D fibrillar network morphology and the typical rheological properties of gels. The fibers inside the gel-like phase were confirmed to be new types of EES solvates using powder X-ray diffraction, thermogravimetric analysis/differential scanning calorimetry, and gas chromatography. The gelation and crystallization regions in EES-1-propanol solid–liquid phase diagram were determined. Analyses of solvent parameters showed that moderate solvent polarity may promote EES gelation. Fourier transform infrared spectra, nuclear magnetic resonance spectra, and scanning electron microscopy analyses indicated that through intermolecular hydrogen bonds, EES and solvent molecules assembled into fibers via crystallographic mismatch branching growth. The fibers intertwined into a 3D network microstructure and formed a gel-like phase, completely immobilizing the solution.展开更多
Ballast water has been a topic of concern for some time because of its potential to introduce invasive species to new habitats. To comply with the International Convention for the Control and Management of Ships' ...Ballast water has been a topic of concern for some time because of its potential to introduce invasive species to new habitats. To comply with the International Convention for the Control and Management of Ships' Ballast Water and Sediments, members of the International Maritime Organization(IMO) must equip their ships with on-board treatment systems to eliminate organism release with ballast water. There are many challenges associated with the implementation of this IMO guideline, one of which is the selection of species for testing the ecological impacts of the treated ballast water. In the United States, ballast water toxicity test methods have been defined by the United States Environmental Protection Agency. However, the test methods had not been finalized in China until the toxicity test methods for ballast water were established in 2008. The Chinese methods have been based on species from three trophic levels: Skeletonema costatum, Neomysis awatschensis, and Ctenogobius gymnauchen. All three species live in broad estuarine and open sea areas of China; they are sensitive to reference toxicants and acclimatize easily to different conditions. In this paper, the biological characteristics, test processes and statistical analysis methods are presented for the three species. Results indicate that the methods for evaluating these three organisms can be included in the ecological toxicity tests for treated ballast water in China.展开更多
The chemical composition and high wear resistance of steel slag(SS)make it a potential alternative to traditional inorganic fillers.3-Aminopropyltriethoxysilane(KH550)modified steel slag(MSS)was successfully prepared,...The chemical composition and high wear resistance of steel slag(SS)make it a potential alternative to traditional inorganic fillers.3-Aminopropyltriethoxysilane(KH550)modified steel slag(MSS)was successfully prepared,and its application in epoxy(EP)anti-corrosion coating was introduced.Due to the grafting of silane coupling agent functional groups onto the surface of SS,MSS exhibited improved solubility in xylene organic solvent and reduced agglomeration.When the MSS content was 15 wt.%,the contact angle of the MSS/EP composite coating was 101°,and the abrasion was only 0.07 g,compared with 56.2°and 0.13 g,respectively,for the pure EP coating.The corrosion resistance of coatings was investigated by performing the electrochemical test(impedance)after immersion in a 3.5 wt.%NaCl solution.The electrochemical test results showed that the impedance modulus of the 15 wt.%MSS/EP composite coating at low frequency(Z_(f)=0.01 Hz)was approximately 1.08×10^(7)Ωcm^(2),which was two orders of magnitude higher than that of the pure EP coating.展开更多
Phenolic resins were employed to prepare electrospun porous carbon nanofibers with a high specific surface area as free-standing electrodes for high-performance supercapacitors.However,the sustainable development of c...Phenolic resins were employed to prepare electrospun porous carbon nanofibers with a high specific surface area as free-standing electrodes for high-performance supercapacitors.However,the sustainable development of conventional phenolic resin has been challenged by petroleum-based phenol and formaldehyde.Lignin with abundant phenolic hydroxyl groups is the main non-petroleum resource that can provide renewable aromatic compounds.Hence,lignin,phenol,and furfural were used to synthesize bio-based phenolic resins,and the activated carbon nanofibers were obtained by electrospinning and one-step carbonization activation.Fourier transform infrared and differential scanning calorimetry were used to characterize the structural and thermal properties.The results reveal that the apparent activation energy of the curing reaction is 89.21 kJ·mol–1 and the reaction order is 0.78.The activated carbon nanofibers show a uniform diameter,specific surface area up to 1100 m^(2)·g^(-1),and total pore volume of 0.62 cm^(3)·g^(-1).The electrode demonstrates a specific capacitance of 238 F·g^(-1)(0.1 A·g^(-1))and good rate capability.The symmetric supercapacitor yields a high energy density of 26.39 W·h·kg^(-1)at 100 W·kg^(-1)and an excellent capacitance retention of 98%after 10000 cycles.These results confirm that the activated carbon nanofiber from bio-based phenolic resins can be applied as electrode material for high-performance supercapacitors.展开更多
Glucose isomerase(GI)is an enzyme with high potential applications.Characterization of GI producing bacteria with interesting properties from an industrial point of view is essential.Bacillus sp.,Paenarthrobacter sp.,...Glucose isomerase(GI)is an enzyme with high potential applications.Characterization of GI producing bacteria with interesting properties from an industrial point of view is essential.Bacillus sp.,Paenarthrobacter sp.,Chryseobacterium sp.,Hymenobacter sp.,Mycobacterium sp.,and Stenotrophomonas sp.were isolated from soil samples.Optimization of enzyme production yield was investigated in various fermentation conditions using response surface methodology.All isolates exhibited maximum GI activity at 40℃,pH 6–8 after 4 days of incubation.A mixture of peptone/yeast extract or tryptone/peptone enhanced higher enzyme production.The same trend was observed in fermentation medium containing 1%xylose or 2%–2.5%wheat straw.This study advanced the knowledge of these bacterial isolates in promoting wheat straw as feedstock for the bio-based industry.展开更多
CO_(2)reformation of methane(CRM)and CO_(2)methanation are two interconnected processes with significant implications for greenhouse gas reduction and sustainable energy production for industrial purposes.While Nibase...CO_(2)reformation of methane(CRM)and CO_(2)methanation are two interconnected processes with significant implications for greenhouse gas reduction and sustainable energy production for industrial purposes.While Nibased catalysis suffers from poor stability due to coke formation or sintering,we report a super stable remedy.The active sites of mesoporous MgO were loaded using wet impregnation.The incorporation of Ni and promoters altered the physical features of the catalysts.Sm–Ni/MgO showed the smallest crystallite size,specific surface area,and pore volume.The Sm–Ni/MgO catalyst was selected as the most suitable candidate for CRM,with 82%CH4 and H2/CO ratio of approximately 100%and also for CO_(2)methanation with the conversion of carbon dioxide(82%)and the selectivity toward methane reaches 100%at temperatures above 300ᵒC.Furthermore,the Sm–Ni/MgO catalyst was stable for 900 min of continuous reaction,without significant carbon deposition.This stability was largely due to the high oxygen mobility on the catalyst surface in the presence of Sm.Overall,we demonstrated the efficacy of using promoted Ni catalysts supported by mesoporous magnesia for the improved reformation of greenhouse gases.展开更多
The world's energy systems are undergoing radical change driven by the commitments to achieve net zero emissions and energy independence. Development of clean hydrogen economy is of paramount importance and hydrog...The world's energy systems are undergoing radical change driven by the commitments to achieve net zero emissions and energy independence. Development of clean hydrogen economy is of paramount importance and hydrogen is expected to play a more important role in the future energy market. An interesting way to produce hydrogen is via dry reforming reaction which uses two green house gasses (CH4 and CO_(2)) as feedstock. Dry reforming is a challenging reaction to scale-up due to its high endothermic and coke formation nature. Microwave has gained interest in the past years as a superior heating mechanism in catalytic reactions due to its capacity in enhancing conversions of reactants and selectivity of products, and suppression of coke formation. Such characteristics has made microwave an excellent alternative to conventional heating in dry reforming reaction. In this study, we aim to discuss different aspects of microwave heating technology and its application in the catalytic dry reforming of methane. The advantages of microwave-assisted methane reforming are discussed via the comparison to the conventional heating.展开更多
Characterization, treatment and releases of eight polybrominated diphenyl ethers (PBDEs) congeners and sixteen polycyclic aromatic hydrocarbons (PAHs) in wastewater were evaluated along the treatment processes of ...Characterization, treatment and releases of eight polybrominated diphenyl ethers (PBDEs) congeners and sixteen polycyclic aromatic hydrocarbons (PAHs) in wastewater were evaluated along the treatment processes of a typical secondary treatment municipal sewage treatment plant (STP) (in Hefei City) situated the beside Nanfei River, East China. The findings showed that the average concentrations of the total PBDEs in raw wastewater and treated effluent were 188.578 and 36.884 ng/L respectively. Brominated diphenyl ether (BDE) 209 congener, the predominant PBDE in the STP and Nanfei River, could be related to the discharge of car-industry-derived wastes. For PAHs, the average concentrations in raw wastewater and treated effluent were 5758.8 and 2240.4 ng/L respectively, with naphthalene, benzo[a]pyrene and indeno[1,2,3-c,d]pyrene being detected at the highest concentrations. PAHs mainly originate from the combustion of biomass/coal and petroleum. The STP reduced about 80% of the PBDEs and 61% of the PAHs, which were eliminated mainly by sedimentation processes. The removal rates of PBDEs/PAHs increased with the increase of their solid-water partitioning coefficients. Accordingly, the STP's effluent, containing some PBDE congeners (e.g., BDE 47, 99 and 209, etc.) and low-molecular-weight PAHs, could be an important contributor of these contaminants' input to Nanfei River. It resulted in a significant increase of PBDE/PAH concentrations and PAH toxicological risk in the river water downstream. About 4.040 kg/yr of PBDEs and 245.324 kg/yr of PAHs could be released into the Nanfei River. The current conventional wastewater treatment processes should be improved to remove the relatively low-molecular-weight PBDEs/PAHs more effectively.展开更多
Seasonal algal blooms of Lake Yangcheng highlight the necessity to develop an effective and optimal water treatment process to enhance the removal of algae and dissolved organic matter (DOM). In the present study, the...Seasonal algal blooms of Lake Yangcheng highlight the necessity to develop an effective and optimal water treatment process to enhance the removal of algae and dissolved organic matter (DOM). In the present study, the coagulation performance for the removal of algae, turbidity, dissolved organic carbon (DOC) and ultraviolet absorbance at 254 nm (UV254) was investigated systematically by central composite design (CCD) using response surface methodology (RSM). The regression models were developed to illustrate the relationships between coagulation performance and experimental variables. Analysis of variance (ANOVA) was performed to test the significance of the response surface models. It can be concluded that the major mechanisms of coagulation to remove algae and DOM were charge neutralization and sweep flocculation at a pH range of 4.66–6.34. The optimal coagulation conditions with coagulant dosage of 7.57 mg Al/L, pH of 5.42 and initial algal cell density of 3.83 × 106 cell/mL led to removal of 96.76%, 97.64%, 40.23% and 30.12% in term of cell density, turbidity, DOC and UV254 absorbance, respectively, which were in good agreement with the validation experimental results. A comparison between the modeling results derived through both ANOVA and artificial neural networks (ANN) based on experimental data showed a high correlation coefficient, which indicated that the models were significant and fitted well with experimental results. The results proposed a valuable reference for the treatment of algae-laden surface water in practical application by the optimal coagulation-flocculation process.展开更多
This is a Special Issue selected from the papers presented at the 6th Global Chinese Symposium of Chemical Engineering,held on campus of the Hong Kong University of Science and Technology,16-19 July 2014.Nearly 100 pa...This is a Special Issue selected from the papers presented at the 6th Global Chinese Symposium of Chemical Engineering,held on campus of the Hong Kong University of Science and Technology,16-19 July 2014.Nearly 100 participants from eight countries and regions participated the symposium including accomplished Chinese scholars from US,UK,Canada,Australia,Singapore,China's Mainland,Taiwan and HK.The first symposium was held in Canada Chaired by Jesse Zhu of展开更多
Very few materials show large magnetoresistance(MR)under a low magnetic field at room temperature,which causes the barrier to the development of magnetic field sensors for detecting low-level electromagnetic radiation...Very few materials show large magnetoresistance(MR)under a low magnetic field at room temperature,which causes the barrier to the development of magnetic field sensors for detecting low-level electromagnetic radiation in real-time.Here,a hybrid reduced graphene oxide(rGO)-based magnetic field sensor is produced by in situ deposition of FeCo nanoparticles(NPs)on reduced graphene oxide(rGO).Special quantum magnetoresistance(MR)of the hybrid rGO is observed,which unveils that Abrikosov's quantum model for layered materials can occur in hybrid rGO;meanwhile,the MR value can be tunable by adjusting the particle density of FeCo NPs on rGO nanosheets.Very high MR value up to 21.02±5.74%at 10 kOe at room temperature is achieved,and the average increasing rate of resistance per kOe is up to 0.9282ΩkOe^-1.In this paper,we demonstrate that the hybrid rGO-based magnetic field sensor can be embedded in a wireless system for real-time detection of low-level electromagnetic radiation caused by a working mobile phone.We believe that the two-dimensional nanomaterials with controllable MR can be integrated with a wireless system for the future connected society.展开更多
The hydrodynamic characteristics of a rectangular gas-driven inverse liquid-solid fluidized bed(GDFB)using particles of different diameters and densities were investigated in detail.Rising gas bubbles cause a liquid u...The hydrodynamic characteristics of a rectangular gas-driven inverse liquid-solid fluidized bed(GDFB)using particles of different diameters and densities were investigated in detail.Rising gas bubbles cause a liquid upflow in the riser portion,enabling a liquid downflow that causes an inverse fluidization in the downer portion.Four flow regimes(fixed bed regime,initial fluidization regime,complete fluidization regime,and circulating fluidization regime)and three transition gas velocities(initial fluidization gas velocity,minimum fluidization gas velocity,and circulating fluidization gas velocity)were identified via visual observation and by monitoring the variations in the pressure drop.The axial local bed voidage(e)of the downer first decreases and then increases with the increase of the gas velocity.Both the liquid circulation velocity and the average particle velocity inside the downer increase with the increase of the gas velocity in the riser,but decrease with the particle loading.An empirical formula was proposed to successfully predict the Richardson-Zaki index“n”,and the predicted e obtained from this formula has a±5%relative error when compared with the experimental e.展开更多
A comprehensive study on the hydrodynamics in the downcomer of a liquid-solid circulating fluidized bed (LSCFB) is crucial in the control and optimization of the extraction process using an ion exchange LSCFB. A com...A comprehensive study on the hydrodynamics in the downcomer of a liquid-solid circulating fluidized bed (LSCFB) is crucial in the control and optimization of the extraction process using an ion exchange LSCFB. A computational fluid dynamics model is proposed in this study to simulate the counter-current two-phase flow in the downcomer of the LSCFB. The model is based on the Eulerian-Eulerian approach incorporating the kinetic theory of granular flow. The predicted results agree well with our earlier experimental data. Furthermore, it is shown that the bed expansion of the particles in the downcomer is directly affected by the superfcial liquid velocity in downcomer and solids circulation rate. The model also predicts the residence time of solid particles in the downcomer using a pulse technique. It is demonstrated that the increase in the superficial liquid velocity decreases the solids dispersion in the downcomer of the LSCFB,展开更多
Experiments were conducted on a lab-scale fluidized bed to study the distribution of liquid ethanol injected into fluidized catalyst particles. Electrical capacitance measurements were used to study the liquid distrib...Experiments were conducted on a lab-scale fluidized bed to study the distribution of liquid ethanol injected into fluidized catalyst particles. Electrical capacitance measurements were used to study the liquid distribution inside the bed, and a new method was developed to determine the liquid content inside fluidized beds of fluid catalytic cracking particles. The results shed light on the complex liquid injection region and reveal the strong effect of superficial gas velocity on liquid distribution inside the fluidized bed, which is also affected by the imbibition of liquid inside particle pores. Particle internal porosity was found to play a major role when the changing mass of liquid in the bed was monitored. The results also showed that the duration of liquid injection affected liquid-solid contact inside the bed and that liouid-solid mixin~ was not homogeneous durin~ the limited liouid injection time.展开更多
The stability of catalyst is of great importance for a long-term operation.In this paper,the hydrodesulfurization stability and deactivation mechanism of unsupported nano MoS_(2) catalyst was examined with light cycle...The stability of catalyst is of great importance for a long-term operation.In this paper,the hydrodesulfurization stability and deactivation mechanism of unsupported nano MoS_(2) catalyst was examined with light cycle oil as feedstock under an extreme hydrotreating condition for 160 h.A typical supported catalyst was also studied for comparison purpose.The results show that the activity of nano MoS_(2) can be well maintained after initial deactivation in the first 60 h time-on-stream.Less coke was found on spent nano MoS_(2) than on the spent supported catalyst,though coke deposition is identified as the main cause of deactivation for the nano catalyst.Without acidic supports,only soft coke is formed on the surface of catalyst.Unlike the supported catalyst,decomposition of active phase played a minor role in the deactivation of nano MoS_(2).展开更多
The influence of gangue compositions (mainly composed of SiO2,CaO,MgO and Al2O3)on the reduction kinetics of carbon-bearing iron ore pellets was estimated at 1373-1473 K in N2 atmosphere.The results showed that gangue...The influence of gangue compositions (mainly composed of SiO2,CaO,MgO and Al2O3)on the reduction kinetics of carbon-bearing iron ore pellets was estimated at 1373-1473 K in N2 atmosphere.The results showed that gangue content and each component distribution affected the pellets reduction process.The reduction rate was found to follow a linear correlation with quaternary basicity R4 [mass ratio of (CaO +MgO)to (SIO2 +Al2O3)]of the carbon-beating iron ore pellets;also,the content of SiO2 solid solution in iron oxide had a significant impact on the reduction rate.At the same reduction temperature,a higher R4 resulted in a lower SiO2 free content,weakening its inhibitory effect on the Boudouard reaction.The reduction temperature of Fe2SiO4 could be reduced by increasing the contents of CaO and MgO,improving the iron oxide reduction as well as the precipitation and growth of the iron grains.The g'angue content and .component distribution showed no effect on the rate-controlling step of the reduction;however,the apparent activation energy of reaction decreased with increasing quaternary basicity.When R4 increased from 0.15 to 0.67,the apparent activation energy decreased from 228.51 to 193.66 kJ/mol.展开更多
The minimum fluidization velocity(U_(mf))is a key parameter for the scale-up of inverse liquid-solid flu-idized beds.Theoretical predictions using common correlations were compared against experimental minimum fluidiz...The minimum fluidization velocity(U_(mf))is a key parameter for the scale-up of inverse liquid-solid flu-idized beds.Theoretical predictions using common correlations were compared against experimental minimum fluidization velocity measurements of low density(28-638 kg/m^(3)),0.80-1.13 mm Styrofoam particles in a fluidized bed with a height of 4.5 m and 0.2 m diameter.The average absolute relative deviation for the predicted minimum fluidization velocity for particles below 300 kg/m^(3) was above 40%using the studied common correlations.A modified Wen and Yu correlation was thus proposed based on novel and past measurements with low-density and small-diameter particles,expanding the range for predicting U_(mf).The new correlation predicted U_(mf) with deviations below 15%for ST028,ST122 and ST300.This modified correlation also improved U_(mf) predictions for comparable particles from a previous study,demonstrating its validity for a larger range of low-density particles.展开更多
High fructose corn syrup has been industrially produced by converting glucose to fructose by glucose isomerases,tetrameric metalloenzymes widely used in industrial biocatalysis.Advances in enzyme engineering and comme...High fructose corn syrup has been industrially produced by converting glucose to fructose by glucose isomerases,tetrameric metalloenzymes widely used in industrial biocatalysis.Advances in enzyme engineering and commercial production of glucose isomerase have paved the way to explore more efficient variants of these enzymes.The 5-hydroxymethylfurfural can be produced from high fructose corn syrup catalytic dehydration,and it can be further converted into various furanic compounds chemically or biologically for various industrial applications as a promising platform chemical.Although the chemical conversion of 5-hydroxymethylfurfural into furanic compounds has been extensively investigated in recent years,bioconversion has shown promise for its mild conditions due to the harsh chemical reaction conditions.This review discusses pro-tein engineering potential for improving glucose isomerase production and recent advancements in bioconversion of 5-hydroxymethylfurfural into value-added furanic derivatives.It suggests bi-ological strategies for the industrial transformation of 5-hydroxymethylfurfural.展开更多
基金financial support of the National Key Projects for Fundamental Research and Development of China(2016YFB0600904)Sichuan University Postdoctoral Research and Development Fund(2017SCU12017)+1 种基金Project of State Key Laboratory of Vanadium and Titanium Resources Comprehensive Utilization(18H0083)Sichuan Science and Technology Department Project(2019YJ0111)。
文摘In this study,a route for simultaneous mineralization of CO2 and production of titanium dioxide and ammonium alum,and microporous silicon dioxide from titanium-bearing blast furnace slag(TBBF slag)was proposed,which is comprised of(NH4)2 S04 roasting,acid leaching,ammonium alum crystallization,silicic acid flocculation and Ti hydrolysis.The effects of relevant process parameters were systematically investigated.The re sults showed that under the optimal roasting and leaching conditions about 85%of titanium and 84.6%of aluminum could be extracted while only 30%of silicon entered the leachate.84%of Al^3+was crystallized from the leachate in the form of ammonium aluminum sulfate dodecahydrate with a purity up to 99.5 wt%.About 85%of the soluble silicic acid was flocculated with the aid of secondary alcohol polyoxyethylene ether 9(AEO-9)to yield a microporous SiO2 material(97.4 wt%)from the crystallized mother liquor.The Al-and Si-depleted solution was then hydrolyzed to generate a titanium dioxide(99.1 wt%)with uniform particle size distribution.It was figured out that approximately 146 kg TiO2 could be produced from 1000 kg of TBBF slag.Therefore,the improved process is a promising method for industrial application.
基金funded by National Natural Science Foundation of China(Grant No.52074161)National Science and Technology Major Project of China(Grant No.2016ZX05065-001)+2 种基金Taishan Scholar Project of Shandong Province(Grant No.tsqn202211177)Shandong Provincial Plan for Introduction and Cultivation of Young Pioneers in Colleges and Universities(Grant No.2021-QingChuang-30613019)Natural Science Foundation of Shandong Province(Grant No.ZR2022ME173).
文摘Dynamic performance on solids flow with water in deviated tubing is essential for the reliability of pump and normal operation of horizontal and directional wells.Compared with coal-water flow in vertical tubing and sand-oil flow with high production in deviated tubing,solids deposition with water shows obvious non-symmetric distributions in deviated tubing from simulations and experiments.The mathematical model of two phase flow was developed under coupling conditions of deviated tubing,low flow rate and viscosity based on the kinetic theory of granular flow and first-order discrete scheme.The results show that solid-water stratified flow in deviated tubing can be divided into two zones of suspension bed and the moving bed throughout the flow field.The solid flowing velocity with water is negative and particles slide down at the bottom of moving bed zone.The process of solids flow with water in deviated tubing will produce pressure loss and consume the kinetic energy.The thickness of deposited layer and the flowing velocity of solids flow downward with water at the moving bed zone enhance with the decreased inlet flow rate and the increased particle size,tubing inside diameter(ID)and inclination angle.Solids are easier into suspension from the upper part of moving bed zone to suspension bed zone and more solid particles flow with water towards the tubing outlet with the increase of inlet flowing velocity.The decision is made to reduce the screen width,tubing ID and inclination angle to maintain to be greater than critical deposition velocity in order to prevent solids settling.And it provides the theoretical basis and technical reserves for solid control and offers an effective approach to enhance tubing cleaning in deviated strings.
基金supported by the National Natural Science Foundation of China(Nos.21576187,21776203)
文摘In this paper, the gelation mechanism of erythromycin ethylsuccinate(EES) during crystallization is investigated for the first time. The generated semisolid gel-like phase exhibited a 3D fibrillar network morphology and the typical rheological properties of gels. The fibers inside the gel-like phase were confirmed to be new types of EES solvates using powder X-ray diffraction, thermogravimetric analysis/differential scanning calorimetry, and gas chromatography. The gelation and crystallization regions in EES-1-propanol solid–liquid phase diagram were determined. Analyses of solvent parameters showed that moderate solvent polarity may promote EES gelation. Fourier transform infrared spectra, nuclear magnetic resonance spectra, and scanning electron microscopy analyses indicated that through intermolecular hydrogen bonds, EES and solvent molecules assembled into fibers via crystallographic mismatch branching growth. The fibers intertwined into a 3D network microstructure and formed a gel-like phase, completely immobilizing the solution.
基金Supported by the National Key Technology R&D Program of China(No.2006BAC11B05)
文摘Ballast water has been a topic of concern for some time because of its potential to introduce invasive species to new habitats. To comply with the International Convention for the Control and Management of Ships' Ballast Water and Sediments, members of the International Maritime Organization(IMO) must equip their ships with on-board treatment systems to eliminate organism release with ballast water. There are many challenges associated with the implementation of this IMO guideline, one of which is the selection of species for testing the ecological impacts of the treated ballast water. In the United States, ballast water toxicity test methods have been defined by the United States Environmental Protection Agency. However, the test methods had not been finalized in China until the toxicity test methods for ballast water were established in 2008. The Chinese methods have been based on species from three trophic levels: Skeletonema costatum, Neomysis awatschensis, and Ctenogobius gymnauchen. All three species live in broad estuarine and open sea areas of China; they are sensitive to reference toxicants and acclimatize easily to different conditions. In this paper, the biological characteristics, test processes and statistical analysis methods are presented for the three species. Results indicate that the methods for evaluating these three organisms can be included in the ecological toxicity tests for treated ballast water in China.
基金the University Synergy Innovation Program of Anhui Province(GXXT-2020-072).
文摘The chemical composition and high wear resistance of steel slag(SS)make it a potential alternative to traditional inorganic fillers.3-Aminopropyltriethoxysilane(KH550)modified steel slag(MSS)was successfully prepared,and its application in epoxy(EP)anti-corrosion coating was introduced.Due to the grafting of silane coupling agent functional groups onto the surface of SS,MSS exhibited improved solubility in xylene organic solvent and reduced agglomeration.When the MSS content was 15 wt.%,the contact angle of the MSS/EP composite coating was 101°,and the abrasion was only 0.07 g,compared with 56.2°and 0.13 g,respectively,for the pure EP coating.The corrosion resistance of coatings was investigated by performing the electrochemical test(impedance)after immersion in a 3.5 wt.%NaCl solution.The electrochemical test results showed that the impedance modulus of the 15 wt.%MSS/EP composite coating at low frequency(Z_(f)=0.01 Hz)was approximately 1.08×10^(7)Ωcm^(2),which was two orders of magnitude higher than that of the pure EP coating.
基金supported by the National Natural Science Foundation of China(Grant Nos.21908204,52074244)the Henan Provincial Key Research and Development Program(Grant No.192102310202).
文摘Phenolic resins were employed to prepare electrospun porous carbon nanofibers with a high specific surface area as free-standing electrodes for high-performance supercapacitors.However,the sustainable development of conventional phenolic resin has been challenged by petroleum-based phenol and formaldehyde.Lignin with abundant phenolic hydroxyl groups is the main non-petroleum resource that can provide renewable aromatic compounds.Hence,lignin,phenol,and furfural were used to synthesize bio-based phenolic resins,and the activated carbon nanofibers were obtained by electrospinning and one-step carbonization activation.Fourier transform infrared and differential scanning calorimetry were used to characterize the structural and thermal properties.The results reveal that the apparent activation energy of the curing reaction is 89.21 kJ·mol–1 and the reaction order is 0.78.The activated carbon nanofibers show a uniform diameter,specific surface area up to 1100 m^(2)·g^(-1),and total pore volume of 0.62 cm^(3)·g^(-1).The electrode demonstrates a specific capacitance of 238 F·g^(-1)(0.1 A·g^(-1))and good rate capability.The symmetric supercapacitor yields a high energy density of 26.39 W·h·kg^(-1)at 100 W·kg^(-1)and an excellent capacitance retention of 98%after 10000 cycles.These results confirm that the activated carbon nanofiber from bio-based phenolic resins can be applied as electrode material for high-performance supercapacitors.
基金supported by the Natural Science and Engineering Research Council of Canada(NSERC)Discovery Grant(RGPIN-2017-05366)to WQ.
文摘Glucose isomerase(GI)is an enzyme with high potential applications.Characterization of GI producing bacteria with interesting properties from an industrial point of view is essential.Bacillus sp.,Paenarthrobacter sp.,Chryseobacterium sp.,Hymenobacter sp.,Mycobacterium sp.,and Stenotrophomonas sp.were isolated from soil samples.Optimization of enzyme production yield was investigated in various fermentation conditions using response surface methodology.All isolates exhibited maximum GI activity at 40℃,pH 6–8 after 4 days of incubation.A mixture of peptone/yeast extract or tryptone/peptone enhanced higher enzyme production.The same trend was observed in fermentation medium containing 1%xylose or 2%–2.5%wheat straw.This study advanced the knowledge of these bacterial isolates in promoting wheat straw as feedstock for the bio-based industry.
基金supports rendered by Zhejiang Normal University(Grant No.YS304221928)Iran National Science Foundation.No.:4002219Yonsei University Mirae Campus.
文摘CO_(2)reformation of methane(CRM)and CO_(2)methanation are two interconnected processes with significant implications for greenhouse gas reduction and sustainable energy production for industrial purposes.While Nibased catalysis suffers from poor stability due to coke formation or sintering,we report a super stable remedy.The active sites of mesoporous MgO were loaded using wet impregnation.The incorporation of Ni and promoters altered the physical features of the catalysts.Sm–Ni/MgO showed the smallest crystallite size,specific surface area,and pore volume.The Sm–Ni/MgO catalyst was selected as the most suitable candidate for CRM,with 82%CH4 and H2/CO ratio of approximately 100%and also for CO_(2)methanation with the conversion of carbon dioxide(82%)and the selectivity toward methane reaches 100%at temperatures above 300ᵒC.Furthermore,the Sm–Ni/MgO catalyst was stable for 900 min of continuous reaction,without significant carbon deposition.This stability was largely due to the high oxygen mobility on the catalyst surface in the presence of Sm.Overall,we demonstrated the efficacy of using promoted Ni catalysts supported by mesoporous magnesia for the improved reformation of greenhouse gases.
文摘The world's energy systems are undergoing radical change driven by the commitments to achieve net zero emissions and energy independence. Development of clean hydrogen economy is of paramount importance and hydrogen is expected to play a more important role in the future energy market. An interesting way to produce hydrogen is via dry reforming reaction which uses two green house gasses (CH4 and CO_(2)) as feedstock. Dry reforming is a challenging reaction to scale-up due to its high endothermic and coke formation nature. Microwave has gained interest in the past years as a superior heating mechanism in catalytic reactions due to its capacity in enhancing conversions of reactants and selectivity of products, and suppression of coke formation. Such characteristics has made microwave an excellent alternative to conventional heating in dry reforming reaction. In this study, we aim to discuss different aspects of microwave heating technology and its application in the catalytic dry reforming of methane. The advantages of microwave-assisted methane reforming are discussed via the comparison to the conventional heating.
基金supported by the Mega-projects of Science Research for Water Environment Improvement(No.2009ZX07106-001,2012ZX07101-002)the National Natural Science Foundation of China(No.40901248)the China Basic Research Program(No.2008CB418206)
文摘Characterization, treatment and releases of eight polybrominated diphenyl ethers (PBDEs) congeners and sixteen polycyclic aromatic hydrocarbons (PAHs) in wastewater were evaluated along the treatment processes of a typical secondary treatment municipal sewage treatment plant (STP) (in Hefei City) situated the beside Nanfei River, East China. The findings showed that the average concentrations of the total PBDEs in raw wastewater and treated effluent were 188.578 and 36.884 ng/L respectively. Brominated diphenyl ether (BDE) 209 congener, the predominant PBDE in the STP and Nanfei River, could be related to the discharge of car-industry-derived wastes. For PAHs, the average concentrations in raw wastewater and treated effluent were 5758.8 and 2240.4 ng/L respectively, with naphthalene, benzo[a]pyrene and indeno[1,2,3-c,d]pyrene being detected at the highest concentrations. PAHs mainly originate from the combustion of biomass/coal and petroleum. The STP reduced about 80% of the PBDEs and 61% of the PAHs, which were eliminated mainly by sedimentation processes. The removal rates of PBDEs/PAHs increased with the increase of their solid-water partitioning coefficients. Accordingly, the STP's effluent, containing some PBDE congeners (e.g., BDE 47, 99 and 209, etc.) and low-molecular-weight PAHs, could be an important contributor of these contaminants' input to Nanfei River. It resulted in a significant increase of PBDE/PAH concentrations and PAH toxicological risk in the river water downstream. About 4.040 kg/yr of PBDEs and 245.324 kg/yr of PAHs could be released into the Nanfei River. The current conventional wastewater treatment processes should be improved to remove the relatively low-molecular-weight PBDEs/PAHs more effectively.
文摘Seasonal algal blooms of Lake Yangcheng highlight the necessity to develop an effective and optimal water treatment process to enhance the removal of algae and dissolved organic matter (DOM). In the present study, the coagulation performance for the removal of algae, turbidity, dissolved organic carbon (DOC) and ultraviolet absorbance at 254 nm (UV254) was investigated systematically by central composite design (CCD) using response surface methodology (RSM). The regression models were developed to illustrate the relationships between coagulation performance and experimental variables. Analysis of variance (ANOVA) was performed to test the significance of the response surface models. It can be concluded that the major mechanisms of coagulation to remove algae and DOM were charge neutralization and sweep flocculation at a pH range of 4.66–6.34. The optimal coagulation conditions with coagulant dosage of 7.57 mg Al/L, pH of 5.42 and initial algal cell density of 3.83 × 106 cell/mL led to removal of 96.76%, 97.64%, 40.23% and 30.12% in term of cell density, turbidity, DOC and UV254 absorbance, respectively, which were in good agreement with the validation experimental results. A comparison between the modeling results derived through both ANOVA and artificial neural networks (ANN) based on experimental data showed a high correlation coefficient, which indicated that the models were significant and fitted well with experimental results. The results proposed a valuable reference for the treatment of algae-laden surface water in practical application by the optimal coagulation-flocculation process.
文摘This is a Special Issue selected from the papers presented at the 6th Global Chinese Symposium of Chemical Engineering,held on campus of the Hong Kong University of Science and Technology,16-19 July 2014.Nearly 100 participants from eight countries and regions participated the symposium including accomplished Chinese scholars from US,UK,Canada,Australia,Singapore,China's Mainland,Taiwan and HK.The first symposium was held in Canada Chaired by Jesse Zhu of
基金the financial support from Canada Innovation Fund-Leaders Opportunity Fundthe Natural Sciences and Engineering Research Council of Canada(NSERC).
文摘Very few materials show large magnetoresistance(MR)under a low magnetic field at room temperature,which causes the barrier to the development of magnetic field sensors for detecting low-level electromagnetic radiation in real-time.Here,a hybrid reduced graphene oxide(rGO)-based magnetic field sensor is produced by in situ deposition of FeCo nanoparticles(NPs)on reduced graphene oxide(rGO).Special quantum magnetoresistance(MR)of the hybrid rGO is observed,which unveils that Abrikosov's quantum model for layered materials can occur in hybrid rGO;meanwhile,the MR value can be tunable by adjusting the particle density of FeCo NPs on rGO nanosheets.Very high MR value up to 21.02±5.74%at 10 kOe at room temperature is achieved,and the average increasing rate of resistance per kOe is up to 0.9282ΩkOe^-1.In this paper,we demonstrate that the hybrid rGO-based magnetic field sensor can be embedded in a wireless system for real-time detection of low-level electromagnetic radiation caused by a working mobile phone.We believe that the two-dimensional nanomaterials with controllable MR can be integrated with a wireless system for the future connected society.
文摘The hydrodynamic characteristics of a rectangular gas-driven inverse liquid-solid fluidized bed(GDFB)using particles of different diameters and densities were investigated in detail.Rising gas bubbles cause a liquid upflow in the riser portion,enabling a liquid downflow that causes an inverse fluidization in the downer portion.Four flow regimes(fixed bed regime,initial fluidization regime,complete fluidization regime,and circulating fluidization regime)and three transition gas velocities(initial fluidization gas velocity,minimum fluidization gas velocity,and circulating fluidization gas velocity)were identified via visual observation and by monitoring the variations in the pressure drop.The axial local bed voidage(e)of the downer first decreases and then increases with the increase of the gas velocity.Both the liquid circulation velocity and the average particle velocity inside the downer increase with the increase of the gas velocity in the riser,but decrease with the particle loading.An empirical formula was proposed to successfully predict the Richardson-Zaki index“n”,and the predicted e obtained from this formula has a±5%relative error when compared with the experimental e.
基金supported by the Discovery Grant and Engage Grant from the Natural Sciences and Engineering Research Council of Canada(NSERC)
文摘A comprehensive study on the hydrodynamics in the downcomer of a liquid-solid circulating fluidized bed (LSCFB) is crucial in the control and optimization of the extraction process using an ion exchange LSCFB. A computational fluid dynamics model is proposed in this study to simulate the counter-current two-phase flow in the downcomer of the LSCFB. The model is based on the Eulerian-Eulerian approach incorporating the kinetic theory of granular flow. The predicted results agree well with our earlier experimental data. Furthermore, it is shown that the bed expansion of the particles in the downcomer is directly affected by the superfcial liquid velocity in downcomer and solids circulation rate. The model also predicts the residence time of solid particles in the downcomer using a pulse technique. It is demonstrated that the increase in the superficial liquid velocity decreases the solids dispersion in the downcomer of the LSCFB,
文摘Experiments were conducted on a lab-scale fluidized bed to study the distribution of liquid ethanol injected into fluidized catalyst particles. Electrical capacitance measurements were used to study the liquid distribution inside the bed, and a new method was developed to determine the liquid content inside fluidized beds of fluid catalytic cracking particles. The results shed light on the complex liquid injection region and reveal the strong effect of superficial gas velocity on liquid distribution inside the fluidized bed, which is also affected by the imbibition of liquid inside particle pores. Particle internal porosity was found to play a major role when the changing mass of liquid in the bed was monitored. The results also showed that the duration of liquid injection affected liquid-solid contact inside the bed and that liouid-solid mixin~ was not homogeneous durin~ the limited liouid injection time.
文摘The stability of catalyst is of great importance for a long-term operation.In this paper,the hydrodesulfurization stability and deactivation mechanism of unsupported nano MoS_(2) catalyst was examined with light cycle oil as feedstock under an extreme hydrotreating condition for 160 h.A typical supported catalyst was also studied for comparison purpose.The results show that the activity of nano MoS_(2) can be well maintained after initial deactivation in the first 60 h time-on-stream.Less coke was found on spent nano MoS_(2) than on the spent supported catalyst,though coke deposition is identified as the main cause of deactivation for the nano catalyst.Without acidic supports,only soft coke is formed on the surface of catalyst.Unlike the supported catalyst,decomposition of active phase played a minor role in the deactivation of nano MoS_(2).
基金National Natural Science Foundation of China (Grant Nos.51574002 and 51404005)Natural Sciences and Engineering Research Council of Canada (NSERC)and Science without borders/CNPq (L.Dessbesell).
文摘The influence of gangue compositions (mainly composed of SiO2,CaO,MgO and Al2O3)on the reduction kinetics of carbon-bearing iron ore pellets was estimated at 1373-1473 K in N2 atmosphere.The results showed that gangue content and each component distribution affected the pellets reduction process.The reduction rate was found to follow a linear correlation with quaternary basicity R4 [mass ratio of (CaO +MgO)to (SIO2 +Al2O3)]of the carbon-beating iron ore pellets;also,the content of SiO2 solid solution in iron oxide had a significant impact on the reduction rate.At the same reduction temperature,a higher R4 resulted in a lower SiO2 free content,weakening its inhibitory effect on the Boudouard reaction.The reduction temperature of Fe2SiO4 could be reduced by increasing the contents of CaO and MgO,improving the iron oxide reduction as well as the precipitation and growth of the iron grains.The g'angue content and .component distribution showed no effect on the rate-controlling step of the reduction;however,the apparent activation energy of reaction decreased with increasing quaternary basicity.When R4 increased from 0.15 to 0.67,the apparent activation energy decreased from 228.51 to 193.66 kJ/mol.
文摘The minimum fluidization velocity(U_(mf))is a key parameter for the scale-up of inverse liquid-solid flu-idized beds.Theoretical predictions using common correlations were compared against experimental minimum fluidization velocity measurements of low density(28-638 kg/m^(3)),0.80-1.13 mm Styrofoam particles in a fluidized bed with a height of 4.5 m and 0.2 m diameter.The average absolute relative deviation for the predicted minimum fluidization velocity for particles below 300 kg/m^(3) was above 40%using the studied common correlations.A modified Wen and Yu correlation was thus proposed based on novel and past measurements with low-density and small-diameter particles,expanding the range for predicting U_(mf).The new correlation predicted U_(mf) with deviations below 15%for ST028,ST122 and ST300.This modified correlation also improved U_(mf) predictions for comparable particles from a previous study,demonstrating its validity for a larger range of low-density particles.
基金supported by the Natural Sciences and Engineering Research Council of Canada(Grant number RGPIN-2017-05366)to WQ.
文摘High fructose corn syrup has been industrially produced by converting glucose to fructose by glucose isomerases,tetrameric metalloenzymes widely used in industrial biocatalysis.Advances in enzyme engineering and commercial production of glucose isomerase have paved the way to explore more efficient variants of these enzymes.The 5-hydroxymethylfurfural can be produced from high fructose corn syrup catalytic dehydration,and it can be further converted into various furanic compounds chemically or biologically for various industrial applications as a promising platform chemical.Although the chemical conversion of 5-hydroxymethylfurfural into furanic compounds has been extensively investigated in recent years,bioconversion has shown promise for its mild conditions due to the harsh chemical reaction conditions.This review discusses pro-tein engineering potential for improving glucose isomerase production and recent advancements in bioconversion of 5-hydroxymethylfurfural into value-added furanic derivatives.It suggests bi-ological strategies for the industrial transformation of 5-hydroxymethylfurfural.