期刊文献+
共找到875篇文章
< 1 2 44 >
每页显示 20 50 100
Enabling heterogeneous catalysis to achieve carbon neutrality: Directional catalytic conversion of CO_(2) into carboxylic acids 被引量:5
1
作者 Xiaofei Zhang Wenhuan Huang +4 位作者 Le Yu Max García-Melchor Dingsheng Wang Linjie Zhi Huabin Zhang 《Carbon Energy》 SCIE EI CAS CSCD 2024年第3期1-35,共35页
The increase in anthropogenic carbon dioxide(CO_(2))emissions has exacerbated the deterioration of the global environment,which should be controlled to achieve carbon neutrality.Central to the core goal of achieving c... The increase in anthropogenic carbon dioxide(CO_(2))emissions has exacerbated the deterioration of the global environment,which should be controlled to achieve carbon neutrality.Central to the core goal of achieving carbon neutrality is the utilization of CO_(2) under economic and sustainable conditions.Recently,the strong need for carbon neutrality has led to a proliferation of studies on the direct conversion of CO_(2) into carboxylic acids,which can effectively alleviate CO_(2) emissions and create high-value chemicals.The purpose of this review is to present the application prospects of carboxylic acids and the basic principles of CO_(2) conversion into carboxylic acids through photo-,electric-,and thermal catalysis.Special attention is focused on the regulation strategy of the activity of abundant catalysts at the molecular level,inspiring the preparation of high-performance catalysts.In addition,theoretical calculations,advanced technologies,and numerous typical examples are introduced to elaborate on the corresponding process and influencing factors of catalytic activity.Finally,challenges and prospects are provided for the future development of this field.It is hoped that this review will contribute to a deeper understanding of the conversion of CO_(2) into carboxylic acids and inspire more innovative breakthroughs. 展开更多
关键词 carbon neutrality carboxylic acids CO_(2)conversion heterogeneous catalyst in situ technology
下载PDF
Peripheral carbazole units-decorated MR emitter containing B−N covalent bond for highly efficient green OLEDs with low roll-off
2
作者 Danrui Wan Jianping Zhou +4 位作者 Guoyun Meng Ning Su Dongdong Zhang Lian Duan Junqiao Ding 《Journal of Semiconductors》 EI CAS CSCD 2024年第8期59-66,共8页
Boron−nitrogen doped multiple resonance(BN-MR)emitters,characterized by B−N covalent bonds,offer distinctive advantages as pivotal building blocks for facile access to novel MR emitters featuring narrowband spectra an... Boron−nitrogen doped multiple resonance(BN-MR)emitters,characterized by B−N covalent bonds,offer distinctive advantages as pivotal building blocks for facile access to novel MR emitters featuring narrowband spectra and high efficiency.However,there remains a scarcity of exploration concerning synthetic methods and structural derivations to expand the library of novel BN-MR emitters.Herein,we present the synthesis of a BN-MR emitter,tCz[B−N]N,through a one-pot borylation reaction directed by the amine group,achieving an impressive yield of 94%.The emitter is decorated by incorporating two 3,6-di-tbutylcarbazole(tCz)units into a B−N covalent bond doped BN-MR parent molecule via para-C−π−D and para-N−π−D conjugations.This peripheral decoration strategy enhances the reverse intersystem crossing process and shifts the emission band towards the pure green region,peaking at 526 nm with a narrowband full-width at half maximum(FWHM)of 41 nm.Consequently,organic light emitting diodes(OLEDs)employing this emitter achieved a maximum external quantum efficiency(EQEmax)value of 27.7%,with minimal efficiency roll-off.Even at a practical luminance of 1000 cd·m^(−2),the device maintains a high EQE value of 24.6%. 展开更多
关键词 MULTI-RESONANCE narrowband emission B−N covalent bond organic light emitting diodes
下载PDF
Realizing methanol synthesis from CO and water via the synergistic effect of Cu^(0)/Cu^(+)over Cu/ZrO_(2) catalyst
3
作者 Yuan Fang Fan Wang +10 位作者 Yang Chen Qian Lv Kun Jiang Hua Yang Huibo Zhao Peng Wang Yuyan Gan Lizhi Wu Yu Tang Xinhua Gao Li Tan 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期126-134,I0004,共10页
The optimizing utilization of ca rbon resources has drawn wide attention all over the world,while exploiting the high-efficiency catalytic routes remains a challenge.Here,a direct methanol synthesis route is realized ... The optimizing utilization of ca rbon resources has drawn wide attention all over the world,while exploiting the high-efficiency catalytic routes remains a challenge.Here,a direct methanol synthesis route is realized from pure CO and H_(2)O over 10%Cu/t-ZrO_(2) catalyst,where the time yield of methanol is144.43 mmol mol_(Cu)^(-1)h^(-1)and the methanol selectivity in hydrocarbons is 100%,The Cu species highly dispersed in the t-ZrO_(2) support lead parts of them in the cationic state.The Cu^(+)sites contribute to the dissociation of H_(2)O,providing the H*source for methanol synthesis,while the formed Cu^(0) sites promote the absorption and transfer of H*during the reaction.Moreover,the H_(2)O is even a better H resource than H_(2) due to its better dissociation effectivity in this catalytic system.The present work offers a new approach for methanol synthesis from CO and new insight into the process of supplying H donor. 展开更多
关键词 H_(2)O CO METHANOL Cu-based catalysts t-ZrO_(2)
下载PDF
Enhancing the Electrocatalytic Oxidation of 5-Hydroxymethylfurfural Through Cascade Structure Tuning for Highly Stable Biomass Upgrading
4
作者 Xiaoli Jiang Xianhui Ma +7 位作者 Yuanteng Yang Yang Liu Yanxia Liu Lin Zhao Penglei Wang Yagang Zhang Yue Lin Yen Wei 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第12期449-467,共19页
Electrocatalytic 5-hydroxymethylfurfural oxidation reaction(HMFOR)provides a promising strategy to convert biomass derivative to highvalue-added chemicals.Herein,a cascade strategy is proposed to construct Pd-NiCo_(2)... Electrocatalytic 5-hydroxymethylfurfural oxidation reaction(HMFOR)provides a promising strategy to convert biomass derivative to highvalue-added chemicals.Herein,a cascade strategy is proposed to construct Pd-NiCo_(2)O_(4)electrocatalyst by Pd loading on Ni-doped Co3O4 and for highly active and stable synergistic HMF oxidation.An elevated current density of 800 mA cm^(-2)can be achieved at 1.5 V,and both Faradaic efficiency and yield of 2,5-furandicarboxylic acid remained close to 100%over 10 consecutive electrolysis.Experimental and theoretical results unveil that the introduction of Pd atoms can modulate the local electronic structure of Ni/Co,which not only balances the competitive adsorption of HMF and OH-species,but also promote the active Ni^(3+)species formation,inducing high indirect oxidation activity.We have also discovered that Ni incorporation facilitates the Co2+pre-oxidation and electrophilic OH*generation to contribute direct oxidation process.This work provides a new approach to design advanced electrocatalyst for biomass upgrading. 展开更多
关键词 5-Hydroxymethylfurfural oxidation reaction Competitive adsorption Cascade strategy Elevated current density
下载PDF
Neurotoxicity mechanism of aconitine in HT22 cells studied by microfluidic chip-mass spectrometry 被引量:6
5
作者 Yingrui Zhang Shiyu Chen +4 位作者 Fangfang Fan Ning Xu Xian-Li Meng Yi Zhang Jin-Ming Lin 《Journal of Pharmaceutical Analysis》 SCIE CAS CSCD 2023年第1期88-98,共11页
Aconitine,a common and main toxic component of Aconitum,is toxic to the central nervous system.However,the mechanism of aconitine neurotoxicity is not yet clear.In this work,we had the hypothesis that excitatory amino... Aconitine,a common and main toxic component of Aconitum,is toxic to the central nervous system.However,the mechanism of aconitine neurotoxicity is not yet clear.In this work,we had the hypothesis that excitatory amino acids can trigger excitotoxicity as a pointcut to explore the mechanism of neurotoxicity induced by aconitine.HT22 cells were simulated by aconitine and the changes of target cell metabolites were real-time online investigated based on a microfluidic chip-mass spectrometry system.Meanwhile,to confirm the metabolic mechanism of aconitine toxicity on HT22 cells,the levels of lactate dehydrogenase,intracellular Ca^(2+),reactive oxygen species,glutathione and superoxide dismutase,and ratio of Bax/Bcl-2 protein were detected by molecular biotechnology.Integration of the detected results revealed that neurotoxicity induced by aconitine was associated with the process of excitotoxicity caused by glutamic acid and aspartic acid,which was followed by the accumulation of lactic acid and reduction of glucose.The surge of extracellular glutamic acid could further lead to a series of cascade reactions including intracellular Ca^(2+)overload and oxidative stress,and eventually result in cell apoptosis.In general,we illustrated a new mechanism of aconitine neurotoxicity and presented a novel analysis strategy that real-time online monitoring of cell metabolites can provide a new approach to mechanism analysis. 展开更多
关键词 ACONITINE Neurotoxicity mechanism HT22 cells Excitatory amino acids Microfluidic chip-mass spectrometry
下载PDF
Analysis of Significant Genes and Pathways in Esophageal Cancer Based on Gene Expression Omnibus Database 被引量:1
6
作者 An-Yi Song Lan Mu +2 位作者 Xiao-Yong Dai Li-Jun Wang Lai-Qiang Huang 《Chinese Medical Sciences Journal》 CAS CSCD 2023年第1期20-28,共9页
Objective To screen antigen targets for immunotherapy by analyzing over-expressed genes,and to identify significant pathways and molecular mechanisms in esophageal cancer by using bioinformatic methods such as enrichm... Objective To screen antigen targets for immunotherapy by analyzing over-expressed genes,and to identify significant pathways and molecular mechanisms in esophageal cancer by using bioinformatic methods such as enrichment analysis,protein-protein interaction(PPI)network,and survival analysis based on the Gene Expression Omnibus(GEO)database.Methods By screening with highly expressed genes,we mainly analyzed proteins MUC13 and EPCAM with transmembrane domain and antigen epitope from TMHMM and IEDB websites.Significant genes and pathways associated with the pathogenesis of esophageal cancer were identified using enrichment analysis,PPI network,and survival analysis.Several software and platforms including Prism 8,R language,Cytoscape,DAVID,STRING,and GEPIA platform were used in the search and/or figure creation.Results Genes MUC13 and EPCAM were over-expressed with several antigen epitopes in esophageal squamous cell carcinoma(ESCC)tissue.Enrichment analysis revealed that the process of keratinization was focused and a series of genes were related with the development of esophageal cancer.Four genes including ALDH3A1,C2,SLC6A1,and ZBTB7C were screened with significant P value of survival curve.Conclusions Genes MUC13 and EPCAM may be promising antigen targets or biomarkers for esophageal cancer.Keratinization may greatly impact the pathogenesis of esophageal cancer.Genes ALDH3A1,C2,SLC6A1,and ZBTB7C may play important roles in the development of esophageal cancer. 展开更多
关键词 GEO esophageal cancer ANTIGEN enrichment analysis survival curve signaling pathway
下载PDF
Experiment and modeling of coke formation and catalyst deactivation in n-heptane catalytic cracking over HZSM-5 zeolites
7
作者 Zhenzhou Ma Xu Hou +3 位作者 Bochong Chen Liu Zhao Enxian Yuan Tingting Cui 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第3期165-172,共8页
Since paraffins catalytic cracking was of significant importance to light olefins and aromatics production,this work was intended to gain insights into the feature and model of coke formation and catalyst deactivation... Since paraffins catalytic cracking was of significant importance to light olefins and aromatics production,this work was intended to gain insights into the feature and model of coke formation and catalyst deactivation in n-heptane catalytic cracking over HZSM-5 zeolites. 18 tests of n-heptane catalytic cracking were designed and carried out over HZSM-5 zeolites in a wide range of operating conditions. A particular attention was paid to the measurement of the conversion, product distribution, coke content, and the porosity and acidity of the fresh and spent HZSM-5 zeolites. It was found that alkene and aromatic promoted coke formation, and it reduced the pore volume and acid site of HZSM-5 zeolites, tailoring its performance in n-heptane catalytic cracking. The specific relationship between HZSM-5 zeolites, n-heptane conversion, product distribution and coke formation was quantitively characterized by the exponential and linear function. Based on the reaction network, the coupled scheme of coke formation and catalyst deactivation were specified for n-heptane catalytic cracking. The dual-model was proposed for the process simulation of n-heptane catalytic cracking over HZSM-5 zeolites. It predicted not only the conversion and product distribution but also coke content with the acceptable errors. 展开更多
关键词 N-HEPTANE HZSM-5 Catalytic cracking COKE DEACTIVATION Dual-model
下载PDF
Advances in sodium-ion batteries at low-temperature: Challenges and strategies
8
作者 Haoran Bai Xiaohui Zhu +3 位作者 Huaisheng Ao Guangyu He Hai Xiao Yinjuan Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期518-539,I0012,共23页
With the continuing boost in the demand for energy storage,there is an increasing requirement for batteries to be capable of operation in extreme environmental conditions.Sodium-ion batteries(SIBs) have emerged as a h... With the continuing boost in the demand for energy storage,there is an increasing requirement for batteries to be capable of operation in extreme environmental conditions.Sodium-ion batteries(SIBs) have emerged as a highly promising energy storage solution due to their promising performance over a wide range of temperatures and the abundance of sodium resources in the earth's crust.Compared to lithiumion batteries(LIBs),although sodium ions possess a larger ionic radius,they are more easily desolvated than lithium ions.Fu rthermore,SIBs have a smaller Stokes radius than lithium ions,resulting in improved sodium-ion mobility in the electrolyte.Nevertheless,SIBs demonstrate a significant decrease in performance at low temperatures(LT),which constrains their operation in harsh weather conditions.Despite the increasing interest in SIBs,there is a notable scarcity of research focusing specifically on their mechanism under LT conditions.This review explores recent research that considers the thermal tolerance of SIBs from an inner chemistry process perspective,spanning a wide temperature spectrum(-70 to100℃),particularly at LT conditions.In addition,the enhancement of electrochemical performance in LT SIBs is based on improvements in reaction kinetics and cycling stability achieved through the utilization of effective electrode materials and electrolyte components.Furthermore,the safety concerns associated with SIBs are addressed and effective strategies are proposed for mitigating these issues.Finally,prospects conducted to extend the environmental frontiers of commercial SIBs are discussed mainly from three viewpoints including innovations in materials,development and research of relevant theoretical mechanisms,and intelligent safety management system establishment for larger-scale energy storage SIBs. 展开更多
关键词 LOW-TEMPERATURE Sodium-ion batteries Reaction kinetics Cycle stability Safety concerns of Sodium-ion batteries
下载PDF
Superwetting Ag/α-Fe_(2)O_(3) anchored mesh with enhanced photocatalytic and antibacterial activities for efficient water purification
9
作者 Jiakai Li Changpeng Lv +5 位作者 Jiajia Song Xiaoling Zhang Xizhen Huang Yingzhuo Ma Haijie Cao Na Liu 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第1期89-103,共15页
Superwetting materials have drawn unprecedented attention in the treatment of oily wastewater due to their preferable anti-fouling property and selective oil/water separation.However,it is still a challenge to fabrica... Superwetting materials have drawn unprecedented attention in the treatment of oily wastewater due to their preferable anti-fouling property and selective oil/water separation.However,it is still a challenge to fabricate multifunctional and environmentally friendly materials,which can be stably applied to purify the actual complicated wastewater.Here,a Ag/Ag/α-Fe_(2)O_(3) heterostructure anchored copper mesh was intentionally synthesized using a facile two-step hydrothermal method.The resultant mesh with superhydrophilicity and underwater superoleophobicity was capable of separating various oil/water mixtures with superior separation efficiency and high permeationflux driven by gravity.Benefiting from the joint effects of the smaller band gap of Ag/α-Fe_(2)O_(3) heterojunction,inherent antibacterial capacity of Ag/α-Fe_(2)O_(3) and Ag nanoparticles,favorable conductive substrate,as well as the hierarchical structure with superwettability,such mesh presented remarkably enhanced degradation capability toward organic dyes under visible light irradiation and antibacterial activity against both Escherichia coli(E.coli)and Staphylococcus aureus(S.aureus)compared with the pure Ag/α-Fe_(2)O_(3) coated mesh.Impressively,the mesh exhibited bifunctional water purification performance,in which organic dyes were eliminated simultaneously from water during oil/water separation in onefiltration process.More importantly,this mesh behaved exceptional chemical resistance,mechanical stability and long-term reusability.Therefore,this material with multifunctional integration may hold promising potential for steady water purification in practice. 展开更多
关键词 Superwetting Ag/α-Fe_(2)O_(3)heterostructure Enhanced photocatalytic and antibacterial activities Water purification Long-term reusability
下载PDF
Atomically Dispersed Ruthenium Catalysts with Open Hollow Structure for Lithium-Oxygen Batteries
10
作者 Xin Chen Yu Zhang +5 位作者 Chang Chen Huinan Li Yuran Lin Ke Yu Caiyun Nan Chen Chen 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第2期154-164,共11页
Lithium–oxygen battery with ultrahigh theoretical energy density is considered a highly competitive next-generation energy storage device,but its practical application is severely hindered by issues such as difficult... Lithium–oxygen battery with ultrahigh theoretical energy density is considered a highly competitive next-generation energy storage device,but its practical application is severely hindered by issues such as difficult decomposition of discharge products at present.Here,we have developed N-doped carbon anchored atomically dispersed Ru sites cathode catalyst with open hollow structure(h-RuNC)for Lithium–oxygen battery.On one hand,the abundance of atomically dispersed Ru sites can effectively catalyze the formation and decomposition of discharge products,thereby greatly enhancing the redox kinetics.On the other hand,the open hollow structure not only enhances the mass activity of atomically dispersed Ru sites but also improves the diffusion efficiency of catalytic molecules.Therefore,the excellent activity from atomically dispersed Ru sites and the enhanced diffusion from open hollow structure respectively improve the redox kinetics and cycling stability,ultimately achieving a high-performance lithium–oxygen battery. 展开更多
关键词 Atomically dispersed Open hollow structure Discharge product LITHIUM Oxygen battery
下载PDF
Preface to special issue on celebrating the 100th anniversary of Xinjiang University
11
作者 Dianzeng Jia Ruimao Hua +1 位作者 Xian-He Bu Yuliang Li 《Nano Research》 SCIE EI CSCD 2024年第1期1-4,共4页
Xinjiang University originated from Xinjiang College of Russian Language,Political Science and Law in 1924.In 1935 and 1960,the college was re-organized and re-named as Xinjiang College and Xinjiang University,respect... Xinjiang University originated from Xinjiang College of Russian Language,Political Science and Law in 1924.In 1935 and 1960,the college was re-organized and re-named as Xinjiang College and Xinjiang University,respectively.In 1978,Xinjiang University was appointed by the State Council as the only national key university in Xinjiang.In 1997,it was designated as one of the first batch of key construction universities in the“211 Project”of China.In 2000,Xinjiang University was rebuilt through merging with Xinjiang Institute of Technology. 展开更多
关键词 XINJIANG ANNIVERSARY originated
原文传递
Hot carrier cooling in lead halide perovskites probed by two-pulse photovoltage correlation spectroscopy
12
作者 Yuqing Huang Chaoyu Guo +9 位作者 Lei Gao Wenna Du Haotian Zheng Da Wu Zhengpu Zhao Chu-Wei Zhang Qin Wang Xin-Feng Liu Qingfeng Yan Ying Jiang 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第10期116-119,共4页
The next-generation hot-carrier solar cells,which can overcome the Shockley-Queisser limit by harvesting excessenergy from hot carriers,are receiving increasing attention.Lead halide perovskite(LHP)materials are consi... The next-generation hot-carrier solar cells,which can overcome the Shockley-Queisser limit by harvesting excessenergy from hot carriers,are receiving increasing attention.Lead halide perovskite(LHP)materials are considered aspromising candidates due to their exceptional photovoltaic properties,good stability and low cost.The cooling rate of hotcarriers is a key parameter influencing the performance of hot-carrier solar cells.In this work,we successfully detected hotcarrier dynamics in operando LHP devices using the two-pulse photovoltage correlation technique.To enhance the signalto-noise ratio,we applied the delay-time modulation method instead of the traditional power modulation.This advancementallowed us to detect the intraband hot carrier cooling time for the organic LHP CH_(3)NH_(3)PbBr_(3),which is as short as 0.21 ps.In comparison,the inorganic Cs-based LHP CsPbBr_(3)exhibited a longer cooling time of around 0.59 ps due to differentphonon contributions.These results provide us new insights into the optimal design of hot-carrier solar cells and highlightthe potential of LHP materials in advancing solar cell technology. 展开更多
关键词 two-pulse correlation spectroscopy lead halide perovskites hot carrier cooling ultrafast dynamics
下载PDF
Photocatalytic Activity of Nanosized ZnWO_4 Prepared by the Sol-gel Method 被引量:11
13
作者 WU Yan ZHANG Shi-cheng ZHANG Li-wu ZHU Yong-fa 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2007年第4期465-468,共4页
Nanosized ZnWO4 photocatalysts were successfully synthesized via the sol-gel process in a temperature range of 450-800℃. The grain size, crystal size, and crystallinity of ZnWO4 particles increased with the increase ... Nanosized ZnWO4 photocatalysts were successfully synthesized via the sol-gel process in a temperature range of 450-800℃. The grain size, crystal size, and crystallinity of ZnWO4 particles increased with the increase of calcina- tion temperature and prolonging calcination time. The photocatalytic activity was measured for the degradation of an aqueous Rhodamine-B(RhB) solution and gaseous formaldehyde(FAD). With the increase of calcination temperature and time, the activities increased to a maximum and then decreased. ZnWO4 photocatalyst prepared at 550℃ for I0 h showed the highest activity, which is similar to the photocatalytic activity of P25TiO2 for the degradation of gase-ous FAD. High crystallinity, large surface area, and good dispersion are responsible for the high photocatalytic per- formance of the prepared ZnWO4. 展开更多
关键词 NANOSIZED Sol-gel method PHOTOCATALYST ZnWO4
下载PDF
Co-MOF as an electron donor for promoting visible-light photoactivities of g-C3N4 nanosheets for CO2 reduction 被引量:13
14
作者 Qiuyu Chen Sijia Li +4 位作者 Hongyi Xu Guofeng Wang Yang Qu Peifen Zhu Dingsheng Wang 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2020年第3期514-523,共10页
A possible mechanism for boosting the visible-light photoactivities of graphitic carbon nitride(g-C3N4)nanosheets for CO2 reduction via coupling with the electron donor Co-metal-organic framework(MOF)is proposed in th... A possible mechanism for boosting the visible-light photoactivities of graphitic carbon nitride(g-C3N4)nanosheets for CO2 reduction via coupling with the electron donor Co-metal-organic framework(MOF)is proposed in this study.Specifically,Co-MOF as an electron donor is capable of transferring the photogenerated electrons in the lowest unoccupied molecular orbital(LUMO)to the conduction band of g-C3N4 to facilitate charge separation.As expected,the prepared Co-MOF/g-C3N4 nanocomposites display excellent visible-light-driven photocatalytic CO2 reduction activities.The CO production rate of 6.75μmol g–1 h–1 and CH4 evolution rate of 5.47μmol g–1 h–1 are obtained,which are approximately 2 times those obtained with the original g-C3N4 under the same conditions.Based on a series of analyses,it is shown that the introduction of Co-MOF not only broadens the range of visible-light absorption but also enhances the charge separation,which improves the photocatalytic activity of g-C3N4 to a higher level.In particular,the hydroxyl radical(·OH)experiment was operated under 590 nm(single-wavelength)irradiation,which further proved that the photogenerated electrons in the LUMO of Co-MOF can successfully migrate to g-C3N4.This work may provide an important strategy for the design of highly efficient g-C3N4-based photocatalysts for CO2 reduction. 展开更多
关键词 Co-MOF g-C3N4 nanosheets Charge separation Visible-light photoactivity Photocatalytic CO2 conversion
下载PDF
Atom-level interfacial synergy of single-atom site catalysts for electrocatalysis 被引量:5
15
作者 Yao Wang Dingsheng Wang Yadong Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第2期103-115,共13页
Single-atom site catalysts(SACs)have made great achievements due to their nearly 100%atomic utilization and uniform active sites.Regulating the surrounding environment of active sites,including electron structure and ... Single-atom site catalysts(SACs)have made great achievements due to their nearly 100%atomic utilization and uniform active sites.Regulating the surrounding environment of active sites,including electron structure and coordination environment via atom-level interface regulation,to design and construct an advanced SACs is of great significance for boosting electrocatalytic reactions.In this review,we systemically summarized the fundamental understandings and intrinsic mechanisms of SACs for electrocatalytic applications based on the interface site regulations.We elaborated the several different regulation strategies of SACs to demonstrate their ascendancy in electrocatalytic applications.Firstly,the interfacial electronic interaction was presented to reveal the electron transfer behavior of active sites.Secondly,the different coordination structures of metal active center coordinated with two or three non-metal elements were also summarized.In addition,other atom-level interfaces of SACs,including metal atom–atom interface,metal atom-X-atom interface(X:non-metal element),metal atom-particle interface,were highlighted and the corresponding promoting effect towards electrocatalysis was disclosed.Finally,we outlooked the limitations,perspectives and challenges of SACs based on atomic interface regulation. 展开更多
关键词 Single-atom site catalysts Interface regulation Electronic interactions Coordination environment Electrocatalytic reaction
下载PDF
Chemiluminescence enzyme immunoassay based on magnetic nanoparticles for detection of hepatocellular carcinoma marker glypican-3 被引量:8
16
作者 Qian-Yun Zhang Hui Chen +1 位作者 Zhen Lin Jin-Ming Lin 《Journal of Pharmaceutical Analysis》 SCIE CAS 2011年第3期166-174,共9页
Glypican-3 (GPC3) is reported as a great promising tumor marker for hepatocellular carcinoma (HCC) diagnosis. Highly sensitive and accurate analysis of serum GPC3 (sGPC3), in combination with or instead of tradi... Glypican-3 (GPC3) is reported as a great promising tumor marker for hepatocellular carcinoma (HCC) diagnosis. Highly sensitive and accurate analysis of serum GPC3 (sGPC3), in combination with or instead of traditional HCC marker alpha-fetoprotein (AFP), is essential for early diagnosis of I-ICC. Biomaterial-functionalized magnetic particles have been utilized as solid supports with good biological compatibility for sensitive immunoassay. Here, the magnetic nanoparticles (MnPs) and magnetic microparticles (MmPs) with carboxyl groups were further modified with streptavidin, and applied for the development of chemiluminescence enzyme immunoassay (CLEIA). After comparing between MnPs- and MmPs-based CLEIA, MnPs-based CLEIA was proved to be a better method with less assay time, greater sensitivity, better linearity and longer chemiluminescence platform. MnPs-based CLEIA was applied for detection of sGPC3 in normal liver, hepatocirrhosis, secondary liver cancer and HCC serum samples. The results indicated that sGPC3 was effective in diagnosis of HCC with high performance. 展开更多
关键词 Magnetic nanoparticle Magnetic microparticleChemiluminescenceenzyme immunoassay GLYPICAN-3 Hepatocellularcarcinoma
下载PDF
Mechanism of Capacity Fading Caused by Mn(Ⅱ)Deposition on Anodes for Spinel Lithium Manganese Oxide Cell 被引量:7
17
作者 陈海辉 MA Tianyi +2 位作者 ZENG Yingying GUO Xiuyan 邱新平 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2017年第1期1-10,共10页
The capacity fade of spinel lithium manganese oxide in lithium-ion batteries is a bottleneck challenge for the large-scale application.The traditional opinion is that Mn(Ⅱ) ions in the anode are reduced to the meta... The capacity fade of spinel lithium manganese oxide in lithium-ion batteries is a bottleneck challenge for the large-scale application.The traditional opinion is that Mn(Ⅱ) ions in the anode are reduced to the metallic manganese that helps for catalyzing electrolyte decomposition.This could poison and damage the solid electrolyte interface(SEI) film,leading to the the capacity fade in Li-ion batteries.We propose a new mechanism that Mn(Ⅱ) deposites at the anode hinders and/or blocks the intercalation/de-intercalation of lithium ions,which leads to the capacity fade in Li-ion batteries.Based on the new mechanism assumption,a kind of new structure with core-shell characteristic is designed to inhabit manganese ion dissolution,thus improving electrochemical cycle performance of the cell.By the way,this mechanism hypothesis is also supported by the results of these experiments.The LiMn2-xTixO4 shell layer enhances cathode resistance to corrosion attack and effectively suppresses dissolution of Mn,then improves battery cycle performance with LiMn_2O_4 cathode,even at high rate and elevated temperature. 展开更多
关键词 capacity fade manganese deposition lithium manganese oxide core-shell structure
下载PDF
Determination of gouty arthritis' biomarkers in human urine using reversed-phase high-performance liquid chromatography 被引量:4
18
作者 Lei-Wen Xiang Jing Li +1 位作者 Jin-Ming Lin Hai-Fang Li 《Journal of Pharmaceutical Analysis》 SCIE CAS 2014年第2期153-158,共6页
Creatinine, uric acid, hypoxanthine and xanthine are important diagnostic biomarkers in human urine for gouty arthritis or renal disease diacrisis. A simple method for simultaneous determination of these biomarkers in... Creatinine, uric acid, hypoxanthine and xanthine are important diagnostic biomarkers in human urine for gouty arthritis or renal disease diacrisis. A simple method for simultaneous determination of these biomarkers in urine based on reversed-phase high-performance liquid chromatography (RP-HPLC) with ultraviolet (UV) detector was proposed. After pretreatment by dilution, centrifugation and filtration, the biomarkers in urine samples were separated by ODS-BP column by elution with methanol/50 mM NaH2PO4 buffer solution at pH 5.26 (5:95). Good linearity between peak areas and concentrations of standards was obtained for the biomarkers with correlation coefficients in the range of 0.9957-0.9993. The proposed analytical method has satisfactory repeatability (the recovery of data in a range of creatinine, uric acid, hypoxanthine and xanthine was 93.49-97.90%, 95.38-96.45%, 112.46-115.78%and 90.82-97.13%with standard deviation of o5%, respectively) and the limits of detection (LODs, S/N Z 3) for creatinine, uric acid, hypoxanthine, and xanthine were 0.010, 0.025, 0.050 and 0.025 mg/L, respectively. The established method was proved to be simple, accurate, sensitive and reliable for the quantitation of gouty arthritis' biomarkers in human urine samples. The ratio of creatinine to uric acid was found to be a possible factor for assessment of gouty arthritis. 展开更多
关键词 Gouty arthritis CREATININE Uric acid HYPOXANTHINE XANTHINE High-performance liquid chromatography
下载PDF
A new metabonomics method for simultaneous determination of EFAs and NEFAs in plasma using GC-MS and its application 被引量:5
19
作者 Li Da Han Qiong Lin Liang +2 位作者 Yi Ming Wang Ping Hu Guo An Luo 《Chinese Chemical Letters》 SCIE CAS CSCD 2009年第9期1103-1106,共4页
A new metabonomics method was developed for simultaneous qualitative and quantitative analysis on esterified and nonesterified fatty acids (EFAs and NEFAs) in plasma. Merely 10 μL of plasma was required. The pretre... A new metabonomics method was developed for simultaneous qualitative and quantitative analysis on esterified and nonesterified fatty acids (EFAs and NEFAs) in plasma. Merely 10 μL of plasma was required. The pretreatment of the sample was simple without disposing the protein. After simple extraction and derivation, 15 FAs in plasma were precisely quantified. Gas chromatography tandem mass spectrometry (GC-MS) was used in the study and the quantities of the analytes, which varied in abundance over three orders of magnitude. The established method showed good accuracy. The curve correlation coefficients were all above 0.997. The RSDs of precision for all compounds were below 15% and recoveries were all between 80 and 110%. PLS-DA modal was used in the data management. 2009 Guo An Luo. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved. 展开更多
关键词 METABONOMICS Fatty acids Quantification GC-MS PLS-DA
下载PDF
Enhanced visible-light photocatalytic degradation and disinfection performance of oxidized nanoporous g-C3N4 via decoration with graphene oxide quantum dots 被引量:10
20
作者 Jing Xu Jin Huang +1 位作者 Zhouping Wang Yongfa Zhu 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2020年第3期474-484,共11页
Oxidized nanoporous g-C3N4(PCNO)decorated with graphene oxide quantum dots(ox-GQDs)was successfully prepared by a facile self-assembly method.As co-catalysts,the ultrasmall zero-dimensional(0 D)ox-GQDs can achieve uni... Oxidized nanoporous g-C3N4(PCNO)decorated with graphene oxide quantum dots(ox-GQDs)was successfully prepared by a facile self-assembly method.As co-catalysts,the ultrasmall zero-dimensional(0 D)ox-GQDs can achieve uniform dispersion on the surface/inner channels of PCNO,as well as intimate contact with PCNO through hydrogen bonding,π-π,and chemical bonding interactions.In contrast with PCNO,the ox-GQDs/PCNO composite photocatalysts possessed improved light-harvesting ability,higher charge-transfer efficiency,enhanced photooxidation capacity,and increased amounts of reactive species due to the upconversion properties,strong electron capturing ability,and peroxidase-like activity of the ox-GQDs.Therefore,the visible-light photocatalytic degradation and disinfection performances of the ox-GQDs/PCNO composite were significantly enhanced.Remarkably,the composite with a 0.2 wt.% deposited amount of ox-GQDs(ox-GQDs-0.2%/PCNO)exhibited optimum amaranth photodegradation activity,with a corresponding rate about 3.1 times as high as that of PCNO.In addition,ox-GQDs-0.2%/PCNO could inactivate about 99.6%of Escherichia coli(E.coli)cells after 4 h of visible light irradiation,whereas only^31.9% of E.coli cells were killed by PCNO.Furthermore,h+,·O2-,and·OH were determined to be the reactive species generated in the photocatalytic process of the ox-GQDs/PCNO system;these species can thoroughly mineralize azo dyes and effectively inactivate pathogenic bacteria. 展开更多
关键词 Photocatalysis Oxidized nanoporous g-C3N4 Graphene oxide quantum dots Degradation DISINFECTION
下载PDF
上一页 1 2 44 下一页 到第
使用帮助 返回顶部