期刊文献+
共找到2,202篇文章
< 1 2 111 >
每页显示 20 50 100
Predictive maintenance and its applications in civil engineering structures:A review
1
作者 Shan Jiazeng Zhang Xi +2 位作者 Loong Cheng Ning Liu Yanzhe Hu Xinyue 《Journal of Southeast University(English Edition)》 EI CAS 2024年第3期245-256,共12页
Structural health monitoring and performance prediction are crucial for smart disaster mitigation and intelligent management of structures throughout their lifespan.Recent advancements in predictive maintenance strate... Structural health monitoring and performance prediction are crucial for smart disaster mitigation and intelligent management of structures throughout their lifespan.Recent advancements in predictive maintenance strategies within the industrial manufacturing industry have inspired similar innovations in civil engineering,aiming to improve structural performance evaluation,damage diagnosis,and capacity prediction.This review delves into the framework of predictive maintenance and examines various existing solutions,focusing on critical areas such as data acquisition,condition monitoring,damage prognosis,and maintenance planning.Results from real-world applications of predictive maintenance in civil engineering,covering high-rise structures,deep foundation pits,and other infrastructure,are presented.The challenges of implementing predictive maintenance in civil engineering structures under current technology,such as model interpretability of data-driven methods and standards for predictive maintenance,are explored.Future research prospects within this area are also discussed. 展开更多
关键词 predictive maintenance civil engineering structural health monitoring machine learning
下载PDF
Development and optimization of object detection technology in pavement engineering: A literature review
2
作者 Hui Yao Yaning Fan +7 位作者 Yanhao Liu Dandan Cao Ning Chen Tiancheng Luo Jingyu Yang Xueyi Hu Jie Ji Zhanping You 《Journal of Road Engineering》 2024年第2期163-188,共26页
Due to the rapid advancement of the transportation industry and the continual increase in pavement infrastructure,it is difficult to keep up with the huge road maintenance task by relying only on the traditional manua... Due to the rapid advancement of the transportation industry and the continual increase in pavement infrastructure,it is difficult to keep up with the huge road maintenance task by relying only on the traditional manual detection method.Intelligent pavement detection technology with deep learning techniques is available for the research and industry areas by the gradual development of computer vision technology.Due to the different characteristics of pavement distress and the uncertainty of the external environment,this kind of object detection technology for distress classification and location still faces great challenges.This paper discusses the development of object detection technology and analyzes classical convolutional neural network(CNN)architecture.In addition to the one-stage and two-stage object detection frameworks,object detection without anchor frames is introduced,which is divided according to whether the anchor box is used or not.This paper also introduces attention mechanisms based on convolutional neural networks and emphasizes the performance of these mechanisms to further enhance the accuracy of object recognition.Lightweight network architecture is introduced for mobile and industrial deployment.Since stereo cameras and sensors are rapidly developed,a detailed summary of three-dimensional object detection algorithms is also provided.While reviewing the history of the development of object detection,the scope of this review is not only limited to the area of pavement crack detection but also guidance for researchers in related fields is shared. 展开更多
关键词 Pavement engineering Object detection Lightweight network Attention mechanism Convolutional neural network
下载PDF
Dynamics and vibration reduction performance of asymmetric tristable nonlinear energy sink 被引量:3
3
作者 Hongyan CHEN Youcheng ZENG +2 位作者 Hu DING Siukai LAI Liqun CHEN 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第3期389-406,共18页
With its complex nonlinear dynamic behavior,the tristable system has shown excellent performance in areas such as energy harvesting and vibration suppression,and has attracted a lot of attention.In this paper,an asymm... With its complex nonlinear dynamic behavior,the tristable system has shown excellent performance in areas such as energy harvesting and vibration suppression,and has attracted a lot of attention.In this paper,an asymmetric tristable design is proposed to improve the vibration suppression efficiency of nonlinear energy sinks(NESs)for the first time.The proposed asymmetric tristable NES(ATNES)is composed of a pair of oblique springs and a vertical spring.Then,the three stable states,symmetric and asymmetric,can be achieved by the adjustment of the distance and stiffness asymmetry of the oblique springs.The governing equations of a linear oscillator(LO)coupled with the ATNES are derived.The approximate analytical solution to the coupled system is obtained by the harmonic balance method(HBM)and verified numerically.The vibration suppression efficiency of three types of ATNES is compared.The results show that the asymmetric design can improve the efficiency of vibration reduction through comparing the chaotic motion of the NES oscillator between asymmetric steady states.In addition,compared with the symmetrical tristable NES(TNES),the ATNES can effectively control smaller structural vibrations.In other words,the ATNES can effectively solve the threshold problem of TNES failure to weak excitation.Therefore,this paper reveals the vibration reduction mechanism of the ATNES,and provides a pathway to expand the effective excitation amplitude range of the NES. 展开更多
关键词 ASYMMETRIC nonlinear energy sink(NES) tristable vibration control po-tential barrier
下载PDF
Tensile strength and failure behavior of rock-mortar interfaces: Direct and indirect measurements 被引量:1
4
作者 Ghasem Shams Patrice Rivard Omid Moradian 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第1期41-55,共15页
The tensile strength at the rock-concrete interface is one of the crucial factors controlling the failure mechanisms of structures,such as concrete gravity dams.Despite the critical importance of the failure mechanism... The tensile strength at the rock-concrete interface is one of the crucial factors controlling the failure mechanisms of structures,such as concrete gravity dams.Despite the critical importance of the failure mechanism and tensile strength of rock-concrete interfaces,understanding of these factors remains very limited.This study investigated the tensile strength and fracturing processes at rock-mortar interfaces subjected to direct and indirect tensile loadings.Digital image correlation(DIC)and acoustic emission(AE)techniques were used to monitor the failure mechanisms of specimens subjected to direct tension and indirect loading(Brazilian tests).The results indicated that the direct tensile strength of the rock-mortar specimens was lower than their indirect tensile strength,with a direct/indirect tensile strength ratio of 65%.DIC strain field data and moment tensor inversions(MTI)of AE events indicated that a significant number of shear microcracks occurred in the specimens subjected to the Brazilian test.The presence of these shear microcracks,which require more energy to break,resulted in a higher tensile strength during the Brazilian tests.In contrast,microcracks were predominantly tensile in specimens subjected to direct tension,leading to a lower tensile strength.Spatiotemporal monitoring of the cracking processes in the rock-mortar interfaces revealed that they show AE precursors before failure under the Brazilian test,whereas they show a minimal number of AE events before failure under direct tension.Due to different microcracking mechanisms,specimens tested under Brazilian tests showed lower roughness with flatter fracture surfaces than those tested under direct tension with jagged and rough fracture surfaces.The results of this study shed light on better understanding the micromechanics of damage in the rock-concrete interfaces for a safer design of engineering structures. 展开更多
关键词 Rock-mortar Rock-concrete Moment tensor inversion(MTI) Acoustic emission(AE) Digital image correlation(DIC) Tensile strength Direct tensile test Brazilian test
下载PDF
Multi-layer perceptron-based data-driven multiscale modelling of granular materials with a novel Frobenius norm-based internal variable 被引量:1
5
作者 Mengqi Wang Y.T.Feng +1 位作者 Shaoheng Guan Tongming Qu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第6期2198-2218,共21页
One objective of developing machine learning(ML)-based material models is to integrate them with well-established numerical methods to solve boundary value problems(BVPs).In the family of ML models,recurrent neural ne... One objective of developing machine learning(ML)-based material models is to integrate them with well-established numerical methods to solve boundary value problems(BVPs).In the family of ML models,recurrent neural networks(RNNs)have been extensively applied to capture history-dependent constitutive responses of granular materials,but these multiple-step-based neural networks are neither sufficiently efficient nor aligned with the standard finite element method(FEM).Single-step-based neural networks like the multi-layer perceptron(MLP)are an alternative to bypass the above issues but have to introduce some internal variables to encode complex loading histories.In this work,one novel Frobenius norm-based internal variable,together with the Fourier layer and residual architectureenhanced MLP model,is crafted to replicate the history-dependent constitutive features of representative volume element(RVE)for granular materials.The obtained ML models are then seamlessly embedded into the FEM to solve the BVP of a biaxial compression case and a rigid strip footing case.The obtained solutions are comparable to results from the FEM-DEM multiscale modelling but achieve significantly improved efficiency.The results demonstrate the applicability of the proposed internal variable in enabling MLP to capture highly nonlinear constitutive responses of granular materials. 展开更多
关键词 Granular materials History-dependence Multi-layer perceptron(MLP) Discrete element method FEM-DEM Machine learning
下载PDF
Evaluation of the coefficient of lateral stress at rest of granular materials under repetitive loading conditions
6
作者 Heerym Han Hyunwook Choo Junghee Park 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第5期1709-1721,共13页
Although the internal stress state of soils can be affected by repetitive loading,there are few studies evaluating the lateral stress(or K_(0))of soils under repetitive loading.This study investigates the changes in K... Although the internal stress state of soils can be affected by repetitive loading,there are few studies evaluating the lateral stress(or K_(0))of soils under repetitive loading.This study investigates the changes in K_(0) and directional shear wave velocity(V_(s))in samples of two granular materials with different particle shapes during repetitive loading.A modified oedometer cell equipped with bender elements and a diaphragm transducer was developed to measure the variations in the lateral stress and the shear wave velocity,under repetitive loading on the loading and unloading paths.The study produced the following results:(1)Repetitive loading on the loading path resulted in an increase in the K_(0) of test samples as a function of cyclic loading number(i),and(2)Repetitive loading on the unloading path resulted in a decrease in K_(0) according to i.The shear wave velocity ratio(i.e.V_(s)(HH)/V_(s)(VH),where the first and second letters in parentheses corresponds to the directions of wave propagation and particle motion,respectively,and V and H corresponds to the vertical and horizontal directions,respectively)according to i supports the experimental observations of this study.However,when the tested material was in lightly over-consolidated state,there was an increase in K_(0) during repetitive loading,indicating that it was the initial K_(0),rather than the loading path,which is responsible for the change in K_(0).The power model can capture the variation in the K_(0) of samples according to i.Notably,the K_(0)=1 line acts as the boundary between the increase and decrease in K_(0) under repetitive loading. 展开更多
关键词 Coefficient of lateral stress at rest Repetitive loading Granular materials Shear wave velocity Stiffness anisotropy
下载PDF
Evaluation of slope stability through rock mass classification and kinematic analysis of some major slopes along NH-1A from Ramban to Banihal, North Western Himalayas
7
作者 Amit Jaiswal A.K.Verma T.N.Singh 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第1期167-182,共16页
The network of Himalayan roadways and highways connects some remote regions of valleys or hill slopes,which is vital for India’s socio-economic growth.Due to natural and artificial factors,frequency of slope instabil... The network of Himalayan roadways and highways connects some remote regions of valleys or hill slopes,which is vital for India’s socio-economic growth.Due to natural and artificial factors,frequency of slope instabilities along the networks has been increasing over last few decades.Assessment of stability of natural and artificial slopes due to construction of these connecting road networks is significant in safely executing these roads throughout the year.Several rock mass classification methods are generally used to assess the strength and deformability of rock mass.This study assesses slope stability along the NH-1A of Ramban district of North Western Himalayas.Various structurally and non-structurally controlled rock mass classification systems have been applied to assess the stability conditions of 14 slopes.For evaluating the stability of these slopes,kinematic analysis was performed along with geological strength index(GSI),rock mass rating(RMR),continuous slope mass rating(CoSMR),slope mass rating(SMR),and Q-slope in the present study.The SMR gives three slopes as completely unstable while CoSMR suggests four slopes as completely unstable.The stability of all slopes was also analyzed using a design chart under dynamic and static conditions by slope stability rating(SSR)for the factor of safety(FoS)of 1.2 and 1 respectively.Q-slope with probability of failure(PoF)1%gives two slopes as stable slopes.Stable slope angle has been determined based on the Q-slope safe angle equation and SSR design chart based on the FoS.The value ranges given by different empirical classifications were RMR(37-74),GSI(27.3-58.5),SMR(11-59),and CoSMR(3.39-74.56).Good relationship was found among RMR&SSR and RMR&GSI with correlation coefficient(R 2)value of 0.815 and 0.6866,respectively.Lastly,a comparative stability of all these slopes based on the above classification has been performed to identify the most critical slope along this road. 展开更多
关键词 Rock mass classification Kinematic analysis Slope stability Himalayan road Static and dynamic conditions
下载PDF
Surface wave inversion with unknown number of soil layers based on a hybrid learning procedure of deep learning and genetic algorithm
8
作者 Zan Zhou Thomas Man-Hoi Lok Wan-Huan Zhou 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第2期345-358,共14页
Surface wave inversion is a key step in the application of surface waves to soil velocity profiling.Currently,a common practice for the process of inversion is that the number of soil layers is assumed to be known bef... Surface wave inversion is a key step in the application of surface waves to soil velocity profiling.Currently,a common practice for the process of inversion is that the number of soil layers is assumed to be known before using heuristic search algorithms to compute the shear wave velocity profile or the number of soil layers is considered as an optimization variable.However,an improper selection of the number of layers may lead to an incorrect shear wave velocity profile.In this study,a deep learning and genetic algorithm hybrid learning procedure is proposed to perform the surface wave inversion without the need to assume the number of soil layers.First,a deep neural network is adapted to learn from a large number of synthetic dispersion curves for inferring the layer number.Then,the shear-wave velocity profile is determined by a genetic algorithm with the known layer number.By applying this procedure to both simulated and real-world cases,the results indicate that the proposed method is reliable and efficient for surface wave inversion. 展开更多
关键词 surface wave inversion analysis shear-wave velocity profile deep neural network genetic algorithm
下载PDF
An efficient physics-guided Bayesian framework for predicting ground settlement profile during excavations in clay
9
作者 Cong Tang Shuyu He Wanhuan Zhou 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第4期1411-1424,共14页
Recently,the application of Bayesian updating to predict excavation-induced deformation has proven successful and improved prediction accuracy significantly.However,updating the ground settlement profile,which is cruc... Recently,the application of Bayesian updating to predict excavation-induced deformation has proven successful and improved prediction accuracy significantly.However,updating the ground settlement profile,which is crucial for determining potential damage to nearby infrastructures,has received limited attention.To address this,this paper proposes a physics-guided simplified model combined with a Bayesian updating framework to accurately predict the ground settlement profile.The advantage of this model is that it eliminates the need for complex finite element modeling and makes the updating framework user-friendly.Furthermore,the model is physically interpretable,which can provide valuable references for construction adjustments.The effectiveness of the proposed method is demonstrated through two field case studies,showing that it can yield satisfactory predictions for the settlement profile. 展开更多
关键词 Bayesian updating EXCAVATIONS Ground settlement profile Simplified model UNCERTAINTY
下载PDF
Three-dimensional numerical analysis of plant-soil hydraulic interactions on pore water pressure of vegetated slope under different rainfall patterns
10
作者 Haowen Guo Charles Wang Wai Ng Qi Zhang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第9期3696-3706,共11页
Understanding the pore water pressure distribution in unsaturated soil is crucial in predicting shallow landslides triggered by rainfall,mainly when dealing with different temporal patterns of rainfall intensity.Howev... Understanding the pore water pressure distribution in unsaturated soil is crucial in predicting shallow landslides triggered by rainfall,mainly when dealing with different temporal patterns of rainfall intensity.However,the hydrological response of vegetated slopes,especially three-dimensional(3D)slopes covered with shrubs,under different rainfall patterns remains unclear and requires further investigation.To address this issue,this study adopts a novel 3D numerical model for simulating hydraulic interactions between the root system of the shrub and the surrounding soil.Three series of numerical parametric studies are conducted to investigate the influences of slope inclination,rainfall pattern and rainfall duration.Four rainfall patterns(advanced,bimodal,delayed,and uniform)and two rainfall durations(4-h intense and 168-h mild rainfall)are considered to study the hydrological response of the slope.The computed results show that 17%higher transpiration-induced suction is found for a steeper slope,which remains even after a short,intense rainfall with a 100-year return period.The extreme rainfalls with advanced(PA),bimodal(PB)and uniform(PU)rainfall patterns need to be considered for the short rainfall duration(4 h),while the delayed(PD)and uniform(PU)rainfall patterns are highly recommended for long rainfall durations(168 h).The presence of plants can improve slope stability markedly under extreme rainfall with a short duration(4 h).For the long duration(168 h),the benefit of the plant in preserving pore-water pressure(PWP)and slope stability may not be sufficient. 展开更多
关键词 Root-soil interactions Rainfall patterns Slope stability Three-dimensional(3D)
下载PDF
Modelling smear effect of vertical drains using a diameter reduction method
11
作者 Zhichao Shen Siau Chen Chian +1 位作者 Siew Ann Tan Chun Fai Leung 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第1期279-290,共12页
Vertical drains are used to accelerate consolidation of clays in ground improvement projects.Smear zones exist around these drains,where permeability is reduced due to soil disturbance caused by the installation proce... Vertical drains are used to accelerate consolidation of clays in ground improvement projects.Smear zones exist around these drains,where permeability is reduced due to soil disturbance caused by the installation process.Hansbo solution is widely used in practice to consider the effects of drain discharge capacity and smear on the consolidation process.In this study,a computationally efficient diameter reduction method(DRM)obtained from the Hansbo solution is proposed to consider the smear effect without the need to model the smear zone physically.Validated by analytical and numerical results,a diameter reduction factor is analytically derived to reduce the diameter of the drain,while achieving similar solutions of pore pressure dissipation profile as the classical full model of the smear zone and drain.With the DRM,the excess pore pressure u obtained from the reduced drain in the original un-disturbed soil zone is accurate enough for practical applications in numerical models.Such performance of DRM is independent of soil material property.Results also show equally accurate performance of DRM under conditions of multi-layered soils and coupled radial-vertical groundwater flow. 展开更多
关键词 CONSOLIDATION Vertical drain Smear effect Pore pressure Soil improvement
下载PDF
Effects of retained dry material on the impact,overflow and landing dynamics
12
作者 Jun Fang Yifei Cui Haiming Liu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第9期3629-3640,共12页
During long-term operation,the performance of obstacles would be changed due to the material accumulating upslope the obstacle.However,the effects of retained material on impact,overflow and landing dynamics of granul... During long-term operation,the performance of obstacles would be changed due to the material accumulating upslope the obstacle.However,the effects of retained material on impact,overflow and landing dynamics of granular flow have not yet been elucidated.To address this gap,physical flume tests and discrete element simulations are conducted considering a range of normalized deposition height h0/H from 0 to 1,where h0 and H represent the deposition height and obstacle height,respectively.An analytical model is modified to evaluate the flow velocity and flow depth after interacting with the retained materials,which further serve to calculate the peak impact force on the obstacle.Notably,the computed impact forces successfully predict the experimental results when a≥25°.In addition,the results indicate that a higher h0/H leads to a lower dynamic impact force,a greater landing distance L,and a larger landing coefficient Cr,where Cr is the ratio of slope-parallel component of landing velocity to flow velocity just before landing.Compared to the existing overflow model,the measured landing distance L is underestimated by up to 30%,and therefore it is insufficient for obstacle design when there is retained material.Moreover,the recommended Cr in current design practice is found to be nonconservative for estimating the landing velocity of geophysical flow.This study provides insightful scientific basis for designing obstacles with deposition. 展开更多
关键词 Granular flow Obstacle deposition Impact OVERFLOW LANDING
下载PDF
Detection of internal crack growth in polyethylene pipe using guided wave ultrasonic testing
13
作者 Jay Kumar Shah Hao Wang Said El-Hawwat 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第2期319-329,共11页
Despite the success of guided wave ultrasonic inspection for internal defect detection in steel pipes,its application on polyethylene(PE)pipe remains relatively unexplored.The growth of internal cracks in PE pipe seve... Despite the success of guided wave ultrasonic inspection for internal defect detection in steel pipes,its application on polyethylene(PE)pipe remains relatively unexplored.The growth of internal cracks in PE pipe severely affects its pressure-holding capacity,hence the early detection of internal cracks is crucial for effective pipeline maintenance strategies.This study extends the scope of guided wave-based ultrasonic testing to detect the growth of internal cracks in a natural gas distribution PE pipe.Laboratory experiments and a finite element model were planned to study the wave-crack interaction at different stages of axially oriented internal crack growth with a piezoceramic transducer-based setup arranged in a pitch-catch configuration.Mode dispersion analysis supplemented with preliminary experiments was performed to isolate the optimal inspection frequency,leading to the selection of the T(0,1)mode at 50-kHz for the investigation.A transmission index based on the energy of the T(0,1)mode was developed to trace the extent of simulated crack growth.The findings revealed an inverse linear correlation between the transmission index and the crack depth for crack growth beyond 20%crack depth. 展开更多
关键词 polyethylene pipes internal cracks guided wave ultrasonic testing torsional modes finite element modeling
下载PDF
Monitoring and evaluation of the water quality of the Lower Neches River, Texas, USA
14
作者 Qin Qian Mengjie He +1 位作者 Frank Sun Xinyu Liu 《Water Science and Engineering》 EI CAS CSCD 2024年第1期21-32,共12页
Increasing bacteria levels in the Lower Neches River caused by Hurricane Harvey has been of a serious concern.This study is to analyze the historical water sampling measurements and real-time water quality data collec... Increasing bacteria levels in the Lower Neches River caused by Hurricane Harvey has been of a serious concern.This study is to analyze the historical water sampling measurements and real-time water quality data collected with wireless sensors to monitor and evaluate water quality under different hydrological and hydraulic conditions.The statistical and Pearson correlation analysis on historical water samples determines that alkalinity,chloride,hardness,conductivity,and pH are highly correlated,and they decrease with increasing flow rate due to dilution.The flow rate has positive correlations with Escherichia coli,total suspended solids,and turbidity,which demonstrates that runoff is one of the causes of the elevated bacteria and sediment loadings in the river.The correlation between E.coli and turbidity indicates that turbidity greater than 45 nephelometric turbidity units in the Neches River can serve as a proxy for E.coli to indicate the bacterial outbreak.A series of statistical tools and an innovative two-layer data smoothing filter are developed to detect outliers,fill missing values,and filter spikes of the sensor measurements.The correlation analysis on the sensor data illustrates that the elevated sediment/bacteria/algae in the river is either caused by the first flush rain and heavy rain events in December to March or practices of land use and land cover.Therefore,utilizing sensor measurements along with rainfall and discharge data is recommended to monitor and evaluate water quality,then in turn to provide early alerts on water resources management decisions. 展开更多
关键词 Water quality Pearson correlation analysis Lower Neches River YSI wireless sensors Non-point pollution
下载PDF
An adaptive machine learning-based optimization method in the aerodynamic analysis of a finite wing under various cruise conditions
15
作者 Zilan Zhang Yu Ao +1 位作者 Shaofan Li Grace X.Gu 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2024年第1期27-34,共8页
Conventional wing aerodynamic optimization processes can be time-consuming and imprecise due to the complexity of versatile flight missions.Plenty of existing literature has considered two-dimensional infinite airfoil... Conventional wing aerodynamic optimization processes can be time-consuming and imprecise due to the complexity of versatile flight missions.Plenty of existing literature has considered two-dimensional infinite airfoil optimization,while three-dimensional finite wing optimizations are subject to limited study because of high computational costs.Here we create an adaptive optimization methodology built upon digitized wing shape deformation and deep learning algorithms,which enable the rapid formulation of finite wing designs for specific aerodynamic performance demands under different cruise conditions.This methodology unfolds in three stages:radial basis function interpolated wing generation,collection of inputs from computational fluid dynamics simulations,and deep neural network that constructs the surrogate model for the optimal wing configuration.It has been demonstrated that the proposed methodology can significantly reduce the computational cost of numerical simulations.It also has the potential to optimize various aerial vehicles undergoing different mission environments,loading conditions,and safety requirements. 展开更多
关键词 Aerodynamic optimization Computational fluid dynamics Radial basis function Finite wing Deep learning neural network
下载PDF
Evaluation of the seismic behavior of reinforced concrete structures with flat slab-column gravity frame and shear walls through nonlinear analysis methods
16
作者 M.A.Najafgholipour S.Heidarian Radbakhsh E.Erfani 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第3期713-726,共14页
This paper presents an investigation of the seismic behavior of reinforced concrete(RC)structures in which shear walls are the main lateral load-resisting elements and the participation of flat slab floor systems is n... This paper presents an investigation of the seismic behavior of reinforced concrete(RC)structures in which shear walls are the main lateral load-resisting elements and the participation of flat slab floor systems is not considered in the seismic design procedure.In this regard,the behavior of six prototype structures(with different heights and plan layouts)is investigated through nonlinear static and time history analyses,implemented in the OpenSees platform.The results of the analyses are presented in terms of the behavior of the slab-column connections and their mode of failure at different loading stages.Moreover,the global response of the buildings is discussed in terms of some parameters,such as lateral overstrength due to the gravity flat slab-column frames.According to the nonlinear static analyses,in structures in which the slab-column connections were designed only for gravity loads,the slab-column connections exhibited a punching mode of failure even in the early stages of loading.However,the punching failure was eliminated in structures in which a minimum transverse reinforcement recommended in ACI 318(2019)was provided in the slabs at joint regions.Furthermore,despite neglecting the contribution of gravity flat slab-column frames in the lateral load resistance of the structures,a relatively significant overstrength was imposed on the structures by the gravity frames. 展开更多
关键词 RC flat slab-column frames seismic behavior nonlinear analysis time history analysis
下载PDF
Towards data-efficient mechanical design of bicontinuous composites usinggenerative AI
17
作者 Milad Masrouri Zhao Qin 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2024年第1期57-64,共8页
The distribution of material phases is crucial to determine the composite’s mechanical property.While the full structure-mechanics relationship of highly ordered material distributions can be studied with finite numb... The distribution of material phases is crucial to determine the composite’s mechanical property.While the full structure-mechanics relationship of highly ordered material distributions can be studied with finite number of cases,this relationship is difficult to be revealed for complex irregular distributions,preventing design of such material structures to meet certain mechanical requirements.The noticeable developments of artificial intelligence(AI)algorithms in material design enables to detect the hidden structure-mechanics correlations which is essential for designing composite of complex structures.It is intriguing how these tools can assist composite design.Here,we focus on the rapid generation of bicontinuous composite structures together with the stress distribution in loading.We find that generative AI,enabled through fine-tuned Low Rank Adaptation models,can be trained with a few inputs to generate both synthetic composite structures and the corresponding von Mises stress distribution.The results show that this technique is convenient in generating massive composites designs with useful mechanical information that dictate stiffness,fracture and robustness of the material with one model,and such has to be done by several different experimental or simulation tests.This research offers valuable insights for the improvement of composite design with the goal of expanding the design space and automatic screening of composite designs for improved mechanical functions. 展开更多
关键词 Generative artificial intelligence Stable diffusion Composite design Phase field model Molecular dynamics simulation
下载PDF
Modelling the water diversion of a sustainable cover system under humid climates
18
作者 Haowen Guo Charles Wang Wai Ng +2 位作者 Qi Zhang Chuanxiang Qu Liwen Hu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第7期2429-2440,共12页
Extreme rainfall significantly threatens the safety of the landfill cover system,especially under humid climates.This study aims to provide design recommendations for a sustainable landfill cover system consisting of ... Extreme rainfall significantly threatens the safety of the landfill cover system,especially under humid climates.This study aims to provide design recommendations for a sustainable landfill cover system consisting of a low-permeability soil layer underlying a two-layer capillary barrier for humid climates.First,the numerical back-analysis was conducted for verification against a series of flume model tests.Then,a parametric study was performed to investigate the effects of inclination angle,particle size and layer thickness on the lateral diversion length(DL)of the three-layer cover system under the 100-year return period rainfall of humid climates.The results show that the water lateral DL of the cover system can be greatly enhanced by increasing the inclination angle from 3°to 18°.Moreover,the bottom layer of the cover system with a coarser d10 was more susceptible to the impact of the heavy rainfall,while this can be alleviated by increasing the thickness of the bottom layer.A dimensionless number,defined as the ratio of thickness and d_(10) of the bottom layer,is proposed for designing lateral diversion of the three-layer cover system under humid climates.To preserve the maximum DL,it is suggested that the proposed dimensionless number should be larger than 95 and 110 for the design of rainfall events with 50-year and 100-year return periods for humid climates,respectively. 展开更多
关键词 Unsaturated soil RECYCLING Construction waste Three-layer landfill cover Water infiltration
下载PDF
Evaluation of soil erosion vulnerability in Hubei Province of China using RUSLE model and combination weighting method
19
作者 YANG Yanpan TIAN Pei +3 位作者 JIA Tinghui WANG Fei YANG Yang HUANG Jianwu 《Journal of Mountain Science》 SCIE CSCD 2024年第10期3318-3336,共19页
Soil erosion has been recognized as a critical environmental issue worldwide.While previous studies have primarily focused on watershed-scale soil erosion vulnerability from a natural factor perspective,there is a not... Soil erosion has been recognized as a critical environmental issue worldwide.While previous studies have primarily focused on watershed-scale soil erosion vulnerability from a natural factor perspective,there is a notable gap in understanding the intricate interplay between natural and socio-economic factors,especially in the context of spatial heterogeneity and nonlinear impacts of human-land interactions.To address this,our study evaluates the soil erosion vulnerability at a provincial scale,taking Hubei Province as a case study to explore the combined effects of natural and socio-economic factors.We developed an evaluation index system based on 15 indicators of soil erosion vulnerability:exposure,sensitivity,and adaptability.In addition,the combination weighting method was applied to determine index weights,and the spatial interaction was analyzed using spatial autocorrelation,geographical temporally weighted regression and geographical detector.The results showed an overall decreasing soil erosion intensity in Hubei Province during 2000 and 2020.The soil erosion vulnerability increased before 2000 and then.The areas with high soil erosion vulnerability were mainly confined in the central and southern regions of Hubei Province(Xiantao,Tianmen,Qianjiang and Ezhou)with obvious spatial aggregation that intensified over time.Natural factors(habitat quality index)had negative impacts on soil erosion vulnerability,whereas socio-economic factors(population density)showed substantial spatial variability in their influences.There was a positive correlation between soil erosion vulnerability and erosion intensity,with the correlation coefficients ranging from-0.41 and 0.93.The increase of slope was found to enhance the positive correlation between soil erosion vulnerability and intensity. 展开更多
关键词 Soil erosion vulnerability RUSLE model Combination weighting method Driving factors Spatial heterogeneity
下载PDF
Distributed fiber optic sensors for tunnel monitoring:A state-of-the-art review
20
作者 Xuehui Zhang Honghu Zhu +1 位作者 Xi Jiang Wout Broere 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第9期3841-3863,共23页
Distributed fiber optic sensors(DFOSs)possess the capability to measure strain and temperature variations over long distances,demonstrating outstanding potential for monitoring underground infrastructure.This study pr... Distributed fiber optic sensors(DFOSs)possess the capability to measure strain and temperature variations over long distances,demonstrating outstanding potential for monitoring underground infrastructure.This study presents a state-of-the-art review of the DFOS applications for monitoring and assessing the deformation behavior of typical tunnel infrastructure,including bored tunnels,conventional tunnels,as well as immersed and cut-and-cover tunnels.DFOS systems based on Brillouin and Rayleigh scattering principles are both considered.When implementing DFOS monitoring,the fiber optic cable can be primarily installed along transverse and longitudinal directions to(1)measure distributed strains by continuously adhering the fiber to the structure’s surface or embedding it in the lining,or(2)measure point displacements by spot-anchoring it on the lining surface.There are four critical aspects of DFOS monitoring,including proper selection of the sensing fiber,selection of the measuring principle for the specific application,design of an effective sensor layout,and establishment of robust field sensor instrumentation.These four issues are comprehensively discussed,and practical suggestions are provided for the implementation of DFOS in tunnel infrastructure monitoring. 展开更多
关键词 Distributed fiber optic sensor(DFOS) Tunnel infrastructure Distributed strain sensing Point displacement monitoring Field instrumentation
下载PDF
上一页 1 2 111 下一页 到第
使用帮助 返回顶部