In this paper, the nonlinear Hunter–Saxton equation, which is a famous partial differential equation,is solved by using a hybrid numerical method based on the quasilinearization method and the bivariate generalized f...In this paper, the nonlinear Hunter–Saxton equation, which is a famous partial differential equation,is solved by using a hybrid numerical method based on the quasilinearization method and the bivariate generalized fractional order of the Chebyshev functions(B-GFCF) collocation method. First, using the quasilinearization method,the equation is converted into a sequence of linear partial differential equations(LPD), and then these LPDs are solved using the B-GFCF collocation method. A very good approximation of solutions is obtained, and comparisons show that the obtained results are more accurate than the results of other researchers.展开更多
In this study, we have constructed a new numerical approach for solving the time-dependent linear and nonlinear Fokker-Planck equations. In fact, we have discretized the time variable with Crank-Nicolson method and fo...In this study, we have constructed a new numerical approach for solving the time-dependent linear and nonlinear Fokker-Planck equations. In fact, we have discretized the time variable with Crank-Nicolson method and for the space variable, a numerical method based on Generalized Lagrange Jacobi Gauss-Lobatto(GLJGL) collocation method is applied. It leads to in solving the equation in a series of time steps and at each time step, the problem is reduced to a problem consisting of a system of algebraic equations that greatly simplifies the problem. One can observe that the proposed method is simple and accurate. Indeed, one of its merits is that it is derivative-free and by proposing a formula for derivative matrices, the difficulty aroused in calculation is overcome, along with that it does not need to calculate the General Lagrange basis and matrices; they have Kronecker property. Linear and nonlinear Fokker-Planck equations are given as examples and the results amply demonstrate that the presented method is very valid, effective,reliable and does not require any restrictive assumptions for nonlinear terms.展开更多
Mathematical models and computer simulations are useful experimental tools for building and testing theories. Many mathematical models in biology can be formulated by a nonlinear system of ordinary differential equati...Mathematical models and computer simulations are useful experimental tools for building and testing theories. Many mathematical models in biology can be formulated by a nonlinear system of ordinary differential equations. This work deals with the numerical solution of the hantavirus infection model, the human immunodeficiency virus (HIV) infection model of CD4^+T cells and the susceptible-infected-removed (SIR) epidemic model using a new reliable algorithm based on shifted Boubaker Lagrangian (SBL) method. This method reduces the solution of such system to a system of linear or non- linear algebraic equations which are solved using the Newton iteration method. The obtained results of the proposed method show highly accurate and valid for an arbitrary finite interval. Also, those are compared with fourth-order Runge-Kutta (RK4) method and with the solutions obtained by some other methods in the literature.展开更多
文摘In this paper, the nonlinear Hunter–Saxton equation, which is a famous partial differential equation,is solved by using a hybrid numerical method based on the quasilinearization method and the bivariate generalized fractional order of the Chebyshev functions(B-GFCF) collocation method. First, using the quasilinearization method,the equation is converted into a sequence of linear partial differential equations(LPD), and then these LPDs are solved using the B-GFCF collocation method. A very good approximation of solutions is obtained, and comparisons show that the obtained results are more accurate than the results of other researchers.
文摘In this study, we have constructed a new numerical approach for solving the time-dependent linear and nonlinear Fokker-Planck equations. In fact, we have discretized the time variable with Crank-Nicolson method and for the space variable, a numerical method based on Generalized Lagrange Jacobi Gauss-Lobatto(GLJGL) collocation method is applied. It leads to in solving the equation in a series of time steps and at each time step, the problem is reduced to a problem consisting of a system of algebraic equations that greatly simplifies the problem. One can observe that the proposed method is simple and accurate. Indeed, one of its merits is that it is derivative-free and by proposing a formula for derivative matrices, the difficulty aroused in calculation is overcome, along with that it does not need to calculate the General Lagrange basis and matrices; they have Kronecker property. Linear and nonlinear Fokker-Planck equations are given as examples and the results amply demonstrate that the presented method is very valid, effective,reliable and does not require any restrictive assumptions for nonlinear terms.
文摘Mathematical models and computer simulations are useful experimental tools for building and testing theories. Many mathematical models in biology can be formulated by a nonlinear system of ordinary differential equations. This work deals with the numerical solution of the hantavirus infection model, the human immunodeficiency virus (HIV) infection model of CD4^+T cells and the susceptible-infected-removed (SIR) epidemic model using a new reliable algorithm based on shifted Boubaker Lagrangian (SBL) method. This method reduces the solution of such system to a system of linear or non- linear algebraic equations which are solved using the Newton iteration method. The obtained results of the proposed method show highly accurate and valid for an arbitrary finite interval. Also, those are compared with fourth-order Runge-Kutta (RK4) method and with the solutions obtained by some other methods in the literature.