期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Toward Intelligent Financial Advisors for Identifying Potential Clients:A Multitask Perspective
1
作者 Qixiang Shao Runlong Yu +4 位作者 Hongke Zhao Chunli Liu Mengyi Zhang Hongmei Song Qi Liu 《Big Data Mining and Analytics》 EI 2022年第1期64-78,共15页
Intelligent Financial Advisors(IFAs)in online financial applications(apps)have brought new life to personal investment by providing appropriate and high-quality portfolios for users.In real-world scenarios,identifying... Intelligent Financial Advisors(IFAs)in online financial applications(apps)have brought new life to personal investment by providing appropriate and high-quality portfolios for users.In real-world scenarios,identifying potential clients is a crucial issue for IFAs,i.e.,identifying users who are willing to purchase the portfolios.Thus,extracting useful information from various characteristics of users and further predicting their purchase inclination are urgent.However,two critical problems encountered in real practice make this prediction task challenging,i.e.,sample selection bias and data sparsity.In this study,we formalize a potential conversion relationship,i.e.,user→activated user→client and decompose this relationship into three related tasks.Then,we propose a Multitask Feature Extraction Model(MFEM),which can leverage useful information contained in these related tasks and learn them jointly,thereby solving the two problems simultaneously.In addition,we design a two-stage feature selection algorithm to select highly relevant user features efficiently and accurately from an incredibly huge number of user feature fields.Finally,we conduct extensive experiments on a real-world dataset provided by a famous fintech bank.Experimental results clearly demonstrate the effectiveness of MFEM. 展开更多
关键词 Intelligent Financial Advisor(IFA) potential client identification MultiTask Learning(MTL) feature selection
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部