In the 6G era,Space-Air-Ground Integrated Network(SAGIN)are anticipated to deliver global coverage,necessitating support for a diverse array of emerging applications in high-mobility,hostile environments.Under such co...In the 6G era,Space-Air-Ground Integrated Network(SAGIN)are anticipated to deliver global coverage,necessitating support for a diverse array of emerging applications in high-mobility,hostile environments.Under such conditions,conventional orthogonal frequency division multiplexing(OFDM)modulation,widely employed in cellular and Wi-Fi communication systems,experiences performance degradation due to significant Doppler shifts.To overcome this obstacle,a novel twodimensional(2D)modulation approach,namely orthogonal time frequency space(OTFS),has emerged as a key enabler for future high-mobility use cases.Distinctively,OTFS modulates information within the delay-Doppler(DD)domain,as opposed to the timefrequency(TF)domain utilized by OFDM.This offers advantages such as Doppler and delay resilience,reduced signaling latency,a lower peak-to-average ratio(PAPR),and a reduced-complexity implementation.Recent studies further indicate that the direct interplay between information and the physical world in the DD domain positions OTFS as a promising waveform for achieving integrated sensing and communications(ISAC).In this article,we present an in-depth review of OTFS technology in the context of the 6G era,encompassing fundamentals,recent advancements,and future directions.Our objective is to provide a helpful resource for researchers engaged in the field of OTFS.展开更多
Visible light communication(VLC),which is a prominent emerging solution that complements the radio frequency(RF)technology,exhibits the potential to meet the demands of fifth-generation(5G)and beyond technologies.The ...Visible light communication(VLC),which is a prominent emerging solution that complements the radio frequency(RF)technology,exhibits the potential to meet the demands of fifth-generation(5G)and beyond technologies.The random movement of mobile terminals in the indoor environment is a challenge in the VLC system.The model of optical attocells has a critical role in the uniform distribution and the quality of communication links in terms of received power and signal-to-noise ratio(SNR).As such,the optical attocells positions were optimized in this study with a developed try and error(TE)algorithm.The optimized optical attocells were examined and compared with previous models.This novel approach had successfully increased minimum received power from−1.29 to−0.225 dBm,along with enhanced SNR performance by 2.06 dB.The bit error rate(BER)was reduced to 4.42×10−8 and 6.63×10−14 by utilizing OOK-NRZ and BPSK modulation techniques,respectively.The optimized attocells positions displayed better uniform distribution,as both received power and SNR performances improved by 0.45 and 0.026,respectively.As the results of the proposed model are optimal,it is suitable for standard office and room model applications.展开更多
Visible light communication(VLC)has a paramount role in industrial implementations,especially for better energy efficiency,high speed-data rates,and low susceptibility to interference.However,since studies on VLC for ...Visible light communication(VLC)has a paramount role in industrial implementations,especially for better energy efficiency,high speed-data rates,and low susceptibility to interference.However,since studies on VLC for industrial implementations are in scarcity,areas concerning illumination optimisation and communication performances demand further investigation.As such,this paper presents a new modelling of light fixture distribution for a warehouse model to provide acceptable illumination and communication performances.The proposed model was evaluated based on various semi-angles at half power(SAAHP)and different height levels for several parameters,including received power,signal to noise ratio(SNR),and bit error rate(BER).The results revealed improvement in terms of received power and SNR with 30 Mbps data rate.Various modulations were studied to improve the link quality,whereby better average BER values of 5.55×10^(−15) and 1.06×10^(−10) had been achieved with 4 PAM and 8 PPM,respectively.The simulation outcomes are indeed viable for the practical warehouse model.展开更多
Airborne communication terminal is a key unit in Ad hoc network of aircrafts. This paper mainly focuses on its implementation by embedded system, which is based on Samsung S3C2410 chip. System architecture, Linux tail...Airborne communication terminal is a key unit in Ad hoc network of aircrafts. This paper mainly focuses on its implementation by embedded system, which is based on Samsung S3C2410 chip. System architecture, Linux tailoring and touch-screen driver design are discussed in detail. Considering the requirements of stability and efficiency of the operating system, dynamic driver-loading method was employed firstly and only the necessary library files were transplanted to assist and test. The drivers finally were directly put into kernel configuration and then an integrated kernel was transplanted. Regarding to the problem of positioning issues on touch-screen, which is implemented in this system, an accurate positioning method is also presented.展开更多
Interconnection of all things challenges the traditional communication methods,and Semantic Communication and Computing(SCC)will become new solutions.It is a challenging task to accurately detect,extract,and represent...Interconnection of all things challenges the traditional communication methods,and Semantic Communication and Computing(SCC)will become new solutions.It is a challenging task to accurately detect,extract,and represent semantic information in the research of SCC-based networks.In previous research,researchers usually use convolution to extract the feature information of a graph and perform the corresponding task of node classification.However,the content of semantic information is quite complex.Although graph convolutional neural networks provide an effective solution for node classification tasks,due to their limitations in representing multiple relational patterns and not recognizing and analyzing higher-order local structures,the extracted feature information is subject to varying degrees of loss.Therefore,this paper extends from a single-layer topology network to a multi-layer heterogeneous topology network.The Bidirectional Encoder Representations from Transformers(BERT)training word vector is introduced to extract the semantic features in the network,and the existing graph neural network is improved by combining the higher-order local feature module of the network model representation network.A multi-layer network embedding algorithm on SCC-based networks with motifs is proposed to complete the task of end-to-end node classification.We verify the effectiveness of the algorithm on a real multi-layer heterogeneous network.展开更多
In this paper, we investigate the upper bound of multicast capacity for content-centric wireless ad hoc networks with content-centric hierarchical routing strategy. We consider two content-centric hierarchical routing...In this paper, we investigate the upper bound of multicast capacity for content-centric wireless ad hoc networks with content-centric hierarchical routing strategy. We consider two content-centric hierarchical routing strategies, namely, the homogeneous hierarchical routing strategy where each content is requested and cached with equal probability, and the heterogenous hierarchical routing strategy where each content is cached with different probabilities and the requested contents follow a Zipf content popularity distribution. For the two proposed hierarchical routing strategies, we establish the upper bounds on multicast capacity of content-centric wireless ad hoc networks, respectively. We then discuss how the system parameters, such as the number of nodes n, the number of users p, the cache size C, the probability of cache and the content popularity distribution impact on the muilticast capacity scalings.展开更多
It is known that packet collisions in wireless networks will deteriorate system performance, hence substantial efforts have been made to avoid collision in multi-user access designs. Also, there have been many studies...It is known that packet collisions in wireless networks will deteriorate system performance, hence substantial efforts have been made to avoid collision in multi-user access designs. Also, there have been many studies on throughput analysis of CSMA wireless networks. However, for a typical CSMA network in which not all nodes can sense each other, it is still not well investigated how link throughputs are affected by collisions. We note that in practical 802.11-like networks, the time is divided into mini-timeslots and packet collisions are in fact unavoidable. Thus, it is desirable to move forward to explore how collisions in such a network will affect system performance. Based on the collision-free ideal CSMA network(ICN) model, this paper attempts to analyze link throughputs when taking the backoff collisions into account and examine the effect of collisions on link throughputs. Specifically, we propose an Extended Ideal CSMA Network(EICN) model to characterize the collision effects as well as the interactions and dependency among links in the network. Based on EICN, we could directly compute link throughputs and collision probabilities. Simulations show that the EICN model is of high accuracy. Under various network topologies and protocol parameter settings, the computation error of link throughputs using EICN is kept to 4% or below. Interestingly, we find that unlike expected, the effect of collisions on link throughputs in a modest CSMA wireless network is not significant, which enriches our understanding on practical CSMA wireless networks such as Wi-Fi.展开更多
Cognitive Internet of Vehicles(CIoV)can improve spectrum utilization by accessing the spectrum licensed to primary user(PU)under the premise of not disturbing the PU’s transmissions.However,the traditional static spe...Cognitive Internet of Vehicles(CIoV)can improve spectrum utilization by accessing the spectrum licensed to primary user(PU)under the premise of not disturbing the PU’s transmissions.However,the traditional static spectrum access makes the CIoV unable to adapt to the various spectrum environments.In this paper,a reinforcement learning based dynamic spectrum access scheme is proposed to improve the transmission performance of the CIoV in the licensed spectrum,and avoid causing harmful interference to the PU.The frame structure of the CIoV is separated into sensing period and access period,whereby the CIoV can optimize the transmission parameters in the access period according to the spectrum decisions in the sensing period.Considering both detection probability and false alarm probability,a Q-learning based spectrum access algorithm is proposed for the CIoV to intelligently select the optimal channel,bandwidth and transmit power under the dynamic spectrum states and various spectrum sensing performance.The simulations have shown that compared with the traditional non-learning spectrum access algorithm,the proposed Q-learning algorithm can effectively improve the spectral efficiency and throughput of the CIoV as well as decrease the interference power to the PU.展开更多
In this paper, we propose a multidimensional version of recurrent least squares support vector machines (MDRLS- SVM) to solve the problem about the prediction of chaotic system. To acquire better prediction performa...In this paper, we propose a multidimensional version of recurrent least squares support vector machines (MDRLS- SVM) to solve the problem about the prediction of chaotic system. To acquire better prediction performance, the high-dimensional space, which provides more information on the system than the scalar time series, is first reconstructed utilizing Takens's embedding theorem. Then the MDRLS-SVM instead of traditional RLS-SVM is used in the high- dimensional space, and the prediction performance can be improved from the point of view of reconstructed embedding phase space. In addition, the MDRLS-SVM algorithm is analysed in the context of noise, and we also find that the MDRLS-SVM has lower sensitivity to noise than the RLS-SVM.展开更多
Exploiting the encoding process of the stabilizer quantum code [[n, k, d]], a deterministic quantum communication scheme, in which n - 1 photons are distributed forward and backward in two-way channel, is proposed to ...Exploiting the encoding process of the stabilizer quantum code [[n, k, d]], a deterministic quantum communication scheme, in which n - 1 photons are distributed forward and backward in two-way channel, is proposed to transmit the secret messages with unconditional security. The present scheme can be implemented to distribute the secret quantum (or classical) messages with great capacity in imperfect quantum channel since the utilized code encodes k-qubit messages for each scheme run.展开更多
We have discussed theoretically the negative refraction in finite one-dimensional (1D) photonic crystals (PCs) composed of alternative layers with high index contrast. The frequency bands of negative refraction ar...We have discussed theoretically the negative refraction in finite one-dimensional (1D) photonic crystals (PCs) composed of alternative layers with high index contrast. The frequency bands of negative refraction are obtained with the help of the photonic band structure, the group velocity and the power transmittance, which are all obtained in analytical expression. There shows negative transverse position shift at the endface when negative refraction occurs, which is analysed in detail.展开更多
This work presents the use of extended Modified Lambert Beer(MLB)model for accurate andcontinuous monitoring of percent blood carboxyhemoglobin(COHb)(SCO)and oxyhemoglobin(OxyHb)saturation(SO,)via a fitting procedure....This work presents the use of extended Modified Lambert Beer(MLB)model for accurate andcontinuous monitoring of percent blood carboxyhemoglobin(COHb)(SCO)and oxyhemoglobin(OxyHb)saturation(SO,)via a fitting procedure.This quantification technique is based on theabsorption characteristics of hemoglobin derivatives in the wavelength range of 520-600 nm togive the best estimates of the required parameters.A comparison of the performance of the developed model and MILB law is made using attenuation data from Monte Carlo simulations for a two-layered skin model.The results revealed a lower mean absolute error of 0.4%in the valuesestimated by the developed model as compared to 10%that is given by the MILB law.This studyshowed that the discussed approach is able to provide consistent and accurate measurement ofblood SO,and SCO across diferent skin pigmen tations suggesting that it may potentially be usedas an alternative means for clinical diagnosis of carbon monoxide(CO)poisoning.展开更多
In this paper, generalized synchronization of two different chaotic dynamical systems is investigated. An active control is adopted to construct a response system which synchronizes with a given drive system for a fun...In this paper, generalized synchronization of two different chaotic dynamical systems is investigated. An active control is adopted to construct a response system which synchronizes with a given drive system for a function relation. Based on rigorous analysis, the error system is asymptotically stable at the equilibrium. Numerical simulations illustrate the effectiveness of the proposed theory.展开更多
In many ultrafast imaging applications, the reduced field-of-view(r FOV) technique is often used to enhance the spatial resolution and field inhomogeneity immunity of the images. The stationary-phase characteristic ...In many ultrafast imaging applications, the reduced field-of-view(r FOV) technique is often used to enhance the spatial resolution and field inhomogeneity immunity of the images. The stationary-phase characteristic of the spatiotemporallyencoded(SPEN) method offers an inherent applicability to r FOV imaging. In this study, a flexible r FOV imaging method is presented and the superiority of the SPEN approach in r FOV imaging is demonstrated. The proposed method is validated with phantom and in vivo rat experiments, including cardiac imaging and contrast-enhanced perfusion imaging. For comparison, the echo planar imaging(EPI) experiments with orthogonal RF excitation are also performed. The results show that the signal-to-noise ratios of the images acquired by the proposed method can be higher than those obtained with the r FOV EPI. Moreover, the proposed method shows better performance in the cardiac imaging and perfusion imaging of rat kidney, and it can scan one or more regions of interest(ROIs) with high spatial resolution in a single shot. It might be a favorable solution to ultrafast imaging applications in cases with severe susceptibility heterogeneities, such as cardiac imaging and perfusion imaging. Furthermore, it might be promising in applications with separate ROIs, such as mammary and limb imaging.展开更多
A quantum secret sharing scheme is proposed by making use of quantum registers. In the proposed scheme, secret message state is encoded into multipartite entangled states. Several identical multi-particle entanglement...A quantum secret sharing scheme is proposed by making use of quantum registers. In the proposed scheme, secret message state is encoded into multipartite entangled states. Several identical multi-particle entanglement states are generated and each particle of the entanglement state is filled in different quantum registers which act as shares of the secret message. Two modes, i.e. the detecting mode and the message mode, are employed so that the eavesdropping can be detected easily and the secret message may be recovered. The security analysis shows that the proposed scheme is secure against eavesdropping of eavesdropper and cheating of participants.展开更多
The high-frequency(HF)communication,commonly covering the frequency range between 3 and30MHz,is an effective and important long-distance communication approach.Using the ionosphere as a natural high altitude reflector...The high-frequency(HF)communication,commonly covering the frequency range between 3 and30MHz,is an effective and important long-distance communication approach.Using the ionosphere as a natural high altitude reflector,trans-horizon HF radio transmission is possible with advantages such as high mobility,convenient deployment,strong survivability and展开更多
A three-part comb decimator is presented in this paper, for the applications with severe requirements of circuit performance and frequency response. Based on the modified prime factorization method and multistage poly...A three-part comb decimator is presented in this paper, for the applications with severe requirements of circuit performance and frequency response. Based on the modified prime factorization method and multistage polyphase decomposition, an efficient non-recursive structure for the cascaded integrator-comb (CIC) decimation filter is derived. Utilizing this structure as the core part, the proposed comb decimator can not only loosen the decimation ratio's limitation, but also balance the tradeoff among the overall power consumption, circuit area and maximum speed. Further, to improve the frequency response of the comb decimator, a cos-prefilter is introduced as the preprocessing part for increasing the aliasing rejection, and an optimum sin-based filter is used as the compensation part for decreasing the passband droop.展开更多
This paper investigates the downlink capacity distribution and the outage probability of the interested area of maximum ratio transmission-selection combining(MRT-SC) scheme in the distributed antenna system(DAS).Comp...This paper investigates the downlink capacity distribution and the outage probability of the interested area of maximum ratio transmission-selection combining(MRT-SC) scheme in the distributed antenna system(DAS).Composite fading channels are assumed,which include path loss,lognormal shadowing and multi-path Rayleigh fading.Analytical approximations of the capacity's cumulative distribution function(CDF),the outage capacity,the mean capacity,and the outage probability of the interested area are derived by means of moment generation function(MGF) and Gauss-Hermite series expansion based approaches.The influence of antenna number,path loss exponent,and shadowing standard deviation on the capacity distribution are investigated.The simulation results agree with the analytical approximations well,and thus the analytical approximations are able to substitute the time-intensive Monte Carlo simulation for further investigation.展开更多
A particle filter is proposed to perform joint estimation of the carrier frequency offset (CFO) and the channel in multiple-input multiple-output orthogonal frequency division multiplexing (MIMO-OFDM) wireless com...A particle filter is proposed to perform joint estimation of the carrier frequency offset (CFO) and the channel in multiple-input multiple-output orthogonal frequency division multiplexing (MIMO-OFDM) wireless communication systems. It marginalizes out the channel parameters from the sampling space in sequential importance sampling (SIS), and propagates them with the Kalman filter. Then the importance weights of the CFO particles are evaluated according to the imaginary part of the error between measurement and estimation. The varieties of particles are maintained by sequential importance resampling (SIR). Simulation results demonstrate this algorithm can estimate the CFO and the channel parameters with high accuracy. At the same time, some robustness is kept when the channel model has small variations.展开更多
In this paper a non-iterative technique is developed for the correction of faulty antenna array based on matrix pencil technique(MPT). The failure of a sensor in antenna array can damage the radiation power pattern ...In this paper a non-iterative technique is developed for the correction of faulty antenna array based on matrix pencil technique(MPT). The failure of a sensor in antenna array can damage the radiation power pattern in terms of sidelobes level and nulls. In the developed technique, the radiation pattern of the array is sampled to form discrete power pattern information set. Then this information set can be arranged in the form of Hankel matrix(HM) and execute the singular value decomposition(SVD). By removing nonprincipal values, we obtain an optimum lower rank estimation of HM. This lower rank matrix corresponds to the corrected pattern. Then the proposed technique is employed to recover the weight excitation and position allocations from the estimated matrix. Numerical simulations confirm the efficiency of the proposed technique, which is compared with the available techniques in terms of sidelobes level and nulls.展开更多
基金supported in part by National Natural Science Foundation of China under Grant 62101232in part by Guangdong Provincial Natural Science Foundation under Grant 2022A1515011257in part by Shenzhen Science and Technology Program under Grant JCYJ20220530114412029。
文摘In the 6G era,Space-Air-Ground Integrated Network(SAGIN)are anticipated to deliver global coverage,necessitating support for a diverse array of emerging applications in high-mobility,hostile environments.Under such conditions,conventional orthogonal frequency division multiplexing(OFDM)modulation,widely employed in cellular and Wi-Fi communication systems,experiences performance degradation due to significant Doppler shifts.To overcome this obstacle,a novel twodimensional(2D)modulation approach,namely orthogonal time frequency space(OTFS),has emerged as a key enabler for future high-mobility use cases.Distinctively,OTFS modulates information within the delay-Doppler(DD)domain,as opposed to the timefrequency(TF)domain utilized by OFDM.This offers advantages such as Doppler and delay resilience,reduced signaling latency,a lower peak-to-average ratio(PAPR),and a reduced-complexity implementation.Recent studies further indicate that the direct interplay between information and the physical world in the DD domain positions OTFS as a promising waveform for achieving integrated sensing and communications(ISAC).In this article,we present an in-depth review of OTFS technology in the context of the 6G era,encompassing fundamentals,recent advancements,and future directions.Our objective is to provide a helpful resource for researchers engaged in the field of OTFS.
基金the grant names“ProfessionalDevelopment Research University Grant”(“UTM Vot No.05E69”and“TDR grant Vot No.05G27”).
文摘Visible light communication(VLC),which is a prominent emerging solution that complements the radio frequency(RF)technology,exhibits the potential to meet the demands of fifth-generation(5G)and beyond technologies.The random movement of mobile terminals in the indoor environment is a challenge in the VLC system.The model of optical attocells has a critical role in the uniform distribution and the quality of communication links in terms of received power and signal-to-noise ratio(SNR).As such,the optical attocells positions were optimized in this study with a developed try and error(TE)algorithm.The optimized optical attocells were examined and compared with previous models.This novel approach had successfully increased minimum received power from−1.29 to−0.225 dBm,along with enhanced SNR performance by 2.06 dB.The bit error rate(BER)was reduced to 4.42×10−8 and 6.63×10−14 by utilizing OOK-NRZ and BPSK modulation techniques,respectively.The optimized attocells positions displayed better uniform distribution,as both received power and SNR performances improved by 0.45 and 0.026,respectively.As the results of the proposed model are optimal,it is suitable for standard office and room model applications.
基金supported by Professional Development Research University Grant(UTM Vot No.06E59).
文摘Visible light communication(VLC)has a paramount role in industrial implementations,especially for better energy efficiency,high speed-data rates,and low susceptibility to interference.However,since studies on VLC for industrial implementations are in scarcity,areas concerning illumination optimisation and communication performances demand further investigation.As such,this paper presents a new modelling of light fixture distribution for a warehouse model to provide acceptable illumination and communication performances.The proposed model was evaluated based on various semi-angles at half power(SAAHP)and different height levels for several parameters,including received power,signal to noise ratio(SNR),and bit error rate(BER).The results revealed improvement in terms of received power and SNR with 30 Mbps data rate.Various modulations were studied to improve the link quality,whereby better average BER values of 5.55×10^(−15) and 1.06×10^(−10) had been achieved with 4 PAM and 8 PPM,respectively.The simulation outcomes are indeed viable for the practical warehouse model.
文摘Airborne communication terminal is a key unit in Ad hoc network of aircrafts. This paper mainly focuses on its implementation by embedded system, which is based on Samsung S3C2410 chip. System architecture, Linux tailoring and touch-screen driver design are discussed in detail. Considering the requirements of stability and efficiency of the operating system, dynamic driver-loading method was employed firstly and only the necessary library files were transplanted to assist and test. The drivers finally were directly put into kernel configuration and then an integrated kernel was transplanted. Regarding to the problem of positioning issues on touch-screen, which is implemented in this system, an accurate positioning method is also presented.
基金supported by National Natural Science Foundation of China(62101088,61801076,61971336)Natural Science Foundation of Liaoning Province(2022-MS-157,2023-MS-108)+1 种基金Key Laboratory of Big Data Intelligent Computing Funds for Chongqing University of Posts and Telecommunications(BDIC-2023-A-003)Fundamental Research Funds for the Central Universities(3132022230).
文摘Interconnection of all things challenges the traditional communication methods,and Semantic Communication and Computing(SCC)will become new solutions.It is a challenging task to accurately detect,extract,and represent semantic information in the research of SCC-based networks.In previous research,researchers usually use convolution to extract the feature information of a graph and perform the corresponding task of node classification.However,the content of semantic information is quite complex.Although graph convolutional neural networks provide an effective solution for node classification tasks,due to their limitations in representing multiple relational patterns and not recognizing and analyzing higher-order local structures,the extracted feature information is subject to varying degrees of loss.Therefore,this paper extends from a single-layer topology network to a multi-layer heterogeneous topology network.The Bidirectional Encoder Representations from Transformers(BERT)training word vector is introduced to extract the semantic features in the network,and the existing graph neural network is improved by combining the higher-order local feature module of the network model representation network.A multi-layer network embedding algorithm on SCC-based networks with motifs is proposed to complete the task of end-to-end node classification.We verify the effectiveness of the algorithm on a real multi-layer heterogeneous network.
基金supported by the NSF of China under Grant No. 61301118 and No. 71171045 the International S&T Cooperation Program of Shanghai Science and Technology Commission under Grant No.15220710600+1 种基金 the Innovation Program of Shanghai Municipal Education Commission under Grant No.14YZ130 the Fundamental Research Funds for the Central Universities.
文摘In this paper, we investigate the upper bound of multicast capacity for content-centric wireless ad hoc networks with content-centric hierarchical routing strategy. We consider two content-centric hierarchical routing strategies, namely, the homogeneous hierarchical routing strategy where each content is requested and cached with equal probability, and the heterogenous hierarchical routing strategy where each content is cached with different probabilities and the requested contents follow a Zipf content popularity distribution. For the two proposed hierarchical routing strategies, we establish the upper bounds on multicast capacity of content-centric wireless ad hoc networks, respectively. We then discuss how the system parameters, such as the number of nodes n, the number of users p, the cache size C, the probability of cache and the content popularity distribution impact on the muilticast capacity scalings.
基金partially supported by the National Natural Science Foundation of China under Grant 61571178,Grant 61771315 and Grant 61501160
文摘It is known that packet collisions in wireless networks will deteriorate system performance, hence substantial efforts have been made to avoid collision in multi-user access designs. Also, there have been many studies on throughput analysis of CSMA wireless networks. However, for a typical CSMA network in which not all nodes can sense each other, it is still not well investigated how link throughputs are affected by collisions. We note that in practical 802.11-like networks, the time is divided into mini-timeslots and packet collisions are in fact unavoidable. Thus, it is desirable to move forward to explore how collisions in such a network will affect system performance. Based on the collision-free ideal CSMA network(ICN) model, this paper attempts to analyze link throughputs when taking the backoff collisions into account and examine the effect of collisions on link throughputs. Specifically, we propose an Extended Ideal CSMA Network(EICN) model to characterize the collision effects as well as the interactions and dependency among links in the network. Based on EICN, we could directly compute link throughputs and collision probabilities. Simulations show that the EICN model is of high accuracy. Under various network topologies and protocol parameter settings, the computation error of link throughputs using EICN is kept to 4% or below. Interestingly, we find that unlike expected, the effect of collisions on link throughputs in a modest CSMA wireless network is not significant, which enriches our understanding on practical CSMA wireless networks such as Wi-Fi.
基金This work was supported by the Joint Foundations of the National Natural Science Foundations of China and the Civil Aviation of China under Grant U1833102the Natural Science Foundation of Liaoning Province under Grants 2020-HYLH-13 and 2019-ZD-0014+1 种基金the fundamental research funds for the central universities under Grant DUT21JC20the Engineering Research Center of Mobile Communications,Ministry of Education.
文摘Cognitive Internet of Vehicles(CIoV)can improve spectrum utilization by accessing the spectrum licensed to primary user(PU)under the premise of not disturbing the PU’s transmissions.However,the traditional static spectrum access makes the CIoV unable to adapt to the various spectrum environments.In this paper,a reinforcement learning based dynamic spectrum access scheme is proposed to improve the transmission performance of the CIoV in the licensed spectrum,and avoid causing harmful interference to the PU.The frame structure of the CIoV is separated into sensing period and access period,whereby the CIoV can optimize the transmission parameters in the access period according to the spectrum decisions in the sensing period.Considering both detection probability and false alarm probability,a Q-learning based spectrum access algorithm is proposed for the CIoV to intelligently select the optimal channel,bandwidth and transmit power under the dynamic spectrum states and various spectrum sensing performance.The simulations have shown that compared with the traditional non-learning spectrum access algorithm,the proposed Q-learning algorithm can effectively improve the spectral efficiency and throughput of the CIoV as well as decrease the interference power to the PU.
基金Project supported by the National Natural Science Foundation of China (Grant No 90207012).
文摘In this paper, we propose a multidimensional version of recurrent least squares support vector machines (MDRLS- SVM) to solve the problem about the prediction of chaotic system. To acquire better prediction performance, the high-dimensional space, which provides more information on the system than the scalar time series, is first reconstructed utilizing Takens's embedding theorem. Then the MDRLS-SVM instead of traditional RLS-SVM is used in the high- dimensional space, and the prediction performance can be improved from the point of view of reconstructed embedding phase space. In addition, the MDRLS-SVM algorithm is analysed in the context of noise, and we also find that the MDRLS-SVM has lower sensitivity to noise than the RLS-SVM.
基金The project supported by National Natural Science Foundation of China under Grant Nos.60472018 and 60573127partly supported by the Postdoctoral Science Foundation of Central South University
文摘Exploiting the encoding process of the stabilizer quantum code [[n, k, d]], a deterministic quantum communication scheme, in which n - 1 photons are distributed forward and backward in two-way channel, is proposed to transmit the secret messages with unconditional security. The present scheme can be implemented to distribute the secret quantum (or classical) messages with great capacity in imperfect quantum channel since the utilized code encodes k-qubit messages for each scheme run.
基金Project supported by China and Shanghai Postdoctoral Science Foundation (Grant No 2004036317), Shanghai Key Laboratory of Special Fiber 0ptics (Shanghai University), the National Natural Science Foundation of China (Grant No 60377025), Science and Technology Commission of Shanghai Municipal (Grant Nos 03QMH1405 and 04JC14036) and the Shanghai Leading Academic Discipline Program (Grant Nos T0102 and T0104).
文摘We have discussed theoretically the negative refraction in finite one-dimensional (1D) photonic crystals (PCs) composed of alternative layers with high index contrast. The frequency bands of negative refraction are obtained with the help of the photonic band structure, the group velocity and the power transmittance, which are all obtained in analytical expression. There shows negative transverse position shift at the endface when negative refraction occurs, which is analysed in detail.
文摘This work presents the use of extended Modified Lambert Beer(MLB)model for accurate andcontinuous monitoring of percent blood carboxyhemoglobin(COHb)(SCO)and oxyhemoglobin(OxyHb)saturation(SO,)via a fitting procedure.This quantification technique is based on theabsorption characteristics of hemoglobin derivatives in the wavelength range of 520-600 nm togive the best estimates of the required parameters.A comparison of the performance of the developed model and MILB law is made using attenuation data from Monte Carlo simulations for a two-layered skin model.The results revealed a lower mean absolute error of 0.4%in the valuesestimated by the developed model as compared to 10%that is given by the MILB law.This studyshowed that the discussed approach is able to provide consistent and accurate measurement ofblood SO,and SCO across diferent skin pigmen tations suggesting that it may potentially be usedas an alternative means for clinical diagnosis of carbon monoxide(CO)poisoning.
文摘In this paper, generalized synchronization of two different chaotic dynamical systems is investigated. An active control is adopted to construct a response system which synchronizes with a given drive system for a function relation. Based on rigorous analysis, the error system is asymptotically stable at the equilibrium. Numerical simulations illustrate the effectiveness of the proposed theory.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11474236,81171331,and U1232212)
文摘In many ultrafast imaging applications, the reduced field-of-view(r FOV) technique is often used to enhance the spatial resolution and field inhomogeneity immunity of the images. The stationary-phase characteristic of the spatiotemporallyencoded(SPEN) method offers an inherent applicability to r FOV imaging. In this study, a flexible r FOV imaging method is presented and the superiority of the SPEN approach in r FOV imaging is demonstrated. The proposed method is validated with phantom and in vivo rat experiments, including cardiac imaging and contrast-enhanced perfusion imaging. For comparison, the echo planar imaging(EPI) experiments with orthogonal RF excitation are also performed. The results show that the signal-to-noise ratios of the images acquired by the proposed method can be higher than those obtained with the r FOV EPI. Moreover, the proposed method shows better performance in the cardiac imaging and perfusion imaging of rat kidney, and it can scan one or more regions of interest(ROIs) with high spatial resolution in a single shot. It might be a favorable solution to ultrafast imaging applications in cases with severe susceptibility heterogeneities, such as cardiac imaging and perfusion imaging. Furthermore, it might be promising in applications with separate ROIs, such as mammary and limb imaging.
基金Supported by the National Natural Science Foundation of China under Grant Nos 60472018 and 60573127.
文摘A quantum secret sharing scheme is proposed by making use of quantum registers. In the proposed scheme, secret message state is encoded into multipartite entangled states. Several identical multi-particle entanglement states are generated and each particle of the entanglement state is filled in different quantum registers which act as shares of the secret message. Two modes, i.e. the detecting mode and the message mode, are employed so that the eavesdropping can be detected easily and the secret message may be recovered. The security analysis shows that the proposed scheme is secure against eavesdropping of eavesdropper and cheating of participants.
文摘The high-frequency(HF)communication,commonly covering the frequency range between 3 and30MHz,is an effective and important long-distance communication approach.Using the ionosphere as a natural high altitude reflector,trans-horizon HF radio transmission is possible with advantages such as high mobility,convenient deployment,strong survivability and
基金Supported by the China Postdoctoral Science Foundation (20080431379).
文摘A three-part comb decimator is presented in this paper, for the applications with severe requirements of circuit performance and frequency response. Based on the modified prime factorization method and multistage polyphase decomposition, an efficient non-recursive structure for the cascaded integrator-comb (CIC) decimation filter is derived. Utilizing this structure as the core part, the proposed comb decimator can not only loosen the decimation ratio's limitation, but also balance the tradeoff among the overall power consumption, circuit area and maximum speed. Further, to improve the frequency response of the comb decimator, a cos-prefilter is introduced as the preprocessing part for increasing the aliasing rejection, and an optimum sin-based filter is used as the compensation part for decreasing the passband droop.
文摘This paper investigates the downlink capacity distribution and the outage probability of the interested area of maximum ratio transmission-selection combining(MRT-SC) scheme in the distributed antenna system(DAS).Composite fading channels are assumed,which include path loss,lognormal shadowing and multi-path Rayleigh fading.Analytical approximations of the capacity's cumulative distribution function(CDF),the outage capacity,the mean capacity,and the outage probability of the interested area are derived by means of moment generation function(MGF) and Gauss-Hermite series expansion based approaches.The influence of antenna number,path loss exponent,and shadowing standard deviation on the capacity distribution are investigated.The simulation results agree with the analytical approximations well,and thus the analytical approximations are able to substitute the time-intensive Monte Carlo simulation for further investigation.
基金Project supported by the National Natural Science Foundation of China (Grant No.60572157)the International Cooper-ation Foundation (Grant No.2008DFA11950)
文摘A particle filter is proposed to perform joint estimation of the carrier frequency offset (CFO) and the channel in multiple-input multiple-output orthogonal frequency division multiplexing (MIMO-OFDM) wireless communication systems. It marginalizes out the channel parameters from the sampling space in sequential importance sampling (SIS), and propagates them with the Kalman filter. Then the importance weights of the CFO particles are evaluated according to the imaginary part of the error between measurement and estimation. The varieties of particles are maintained by sequential importance resampling (SIR). Simulation results demonstrate this algorithm can estimate the CFO and the channel parameters with high accuracy. At the same time, some robustness is kept when the channel model has small variations.
基金sypported by the Research Management Centre(RMC),School of Postgraduate Studies(SPS),Communication Engineering Department,Faculty of Electrical Engineering(FKE),Universiti Teknologi Malaysia(UTM),Johor Bahru(Grant Nos.12H09 and 03E20)
文摘In this paper a non-iterative technique is developed for the correction of faulty antenna array based on matrix pencil technique(MPT). The failure of a sensor in antenna array can damage the radiation power pattern in terms of sidelobes level and nulls. In the developed technique, the radiation pattern of the array is sampled to form discrete power pattern information set. Then this information set can be arranged in the form of Hankel matrix(HM) and execute the singular value decomposition(SVD). By removing nonprincipal values, we obtain an optimum lower rank estimation of HM. This lower rank matrix corresponds to the corrected pattern. Then the proposed technique is employed to recover the weight excitation and position allocations from the estimated matrix. Numerical simulations confirm the efficiency of the proposed technique, which is compared with the available techniques in terms of sidelobes level and nulls.