期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Determination of the Optimal Speed of Pultrusion for Large-Sized Composite Rods
1
作者 Aleksandr Krasnovskii Iliya Kazakov 《Journal of Encapsulation and Adsorption Sciences》 2012年第3期21-26,共6页
The paper describes a mathematical model of the stress-strain state of polymer composite materials in the pultrusion process of large-sized products. The influence of the pull speed on the stress-strain state of the p... The paper describes a mathematical model of the stress-strain state of polymer composite materials in the pultrusion process of large-sized products. The influence of the pull speed on the stress-strain state of the products is investigated. To determine the maximum possible pull speed series of solutions at different pull speeds are obtained. Depending on the maximum strain in the cross section of the rod determined the optimal value of pulling speed. 展开更多
关键词 COMPOSITE Material PULTRUSION STRESS-STRAIN State PERMEABILITY Oversized ROD
下载PDF
氮化硼填充导热绝缘复合材料的研究进展 被引量:21
2
作者 秦丽丽 王占京 +4 位作者 侯君 瞿雄伟 张立群 Saeed Z Beckry A 《高分子材料科学与工程》 EI CAS CSCD 北大核心 2013年第9期175-178,共4页
近来,通过添加导热填料制备高导热绝缘聚合物基复合材料成为学者们研究的热点。文中综述了以氮化硼(BN)为填料的导热塑料、导热橡胶的研究现状。发现对无机填料进行表面处理,可以提高基体与填料间的相容性,减小两者间的热传导阻力;采用... 近来,通过添加导热填料制备高导热绝缘聚合物基复合材料成为学者们研究的热点。文中综述了以氮化硼(BN)为填料的导热塑料、导热橡胶的研究现状。发现对无机填料进行表面处理,可以提高基体与填料间的相容性,减小两者间的热传导阻力;采用多模式的填料以适当的比例混杂填充聚合物基体,可以使填料间接触面积增大,从而有效提高聚合物基体的热导率。文中还简述了填充型导热复合材料的导热机理和典型理论模型,并提出了提高复合材料导热性的关键所在。 展开更多
关键词 氮化硼 导热绝缘 复合材料 导热机理 导热模型
下载PDF
One-pot synthesis of Li_3VO_4@C nanofibers by electrospinning with enhanced electrochemical performance for lithium-ion batteries 被引量:5
3
作者 Ruihuan Qin Gaoqi Shao +3 位作者 Junxian Hou Zhi Zheng Tianyou Zhai Huiqiao Li 《Science Bulletin》 SCIE EI CAS CSCD 2017年第15期1081-1088,共8页
Electrospinning is firstly used to one-pot synthesis of Li3VO4@C nanofibers in a large scale. Although with the presence of organic sources in synthesis process, the pure phase Li3VO4 with superior nanofibrous morphol... Electrospinning is firstly used to one-pot synthesis of Li3VO4@C nanofibers in a large scale. Although with the presence of organic sources in synthesis process, the pure phase Li3VO4 with superior nanofibrous morphology is still successfully obtained through adjusting different heat treatment processes and different vanadium sources. The prepared Li3VO4@C nanofibers exhibit a unique structure in which nanosized Li3VO4 particles are uniformly embedded in amorphous carbon matrix. Compared with LiBVO4/C powder, Li3VO4@C nanofibers display enhanced reversible capacity of 451 mAhg^-1 at 40mAg^-1 with an increased initial coulombic efficiency of 82.3%, and the capacity can remain at 394 mAh g ^-1 after 100 cycles. This superior electrochemical performance can be attributed to its unique structure which ensures a high reactivity by nanosized Li3VO4, more stable electrode/electrolyte interface by carbon encapsulation, improved electronic conductivity and buffered volume changes by flexible carbon matrix. The electrospinning technology provides an effective method to obtain high performance Li3VO4 as a promising anode material for lithium-ion batteries. 展开更多
关键词 Lithium vanadium oxide Electrospinning Lithium-ion batteries Anode Carbon nanocomposite
原文传递
Acid promoted Ni/NiO monolithic electrode for overall water splitting in alkaline medium 被引量:4
4
作者 Caicai Li Junxian HOU +4 位作者 Zexing Wu Kai Guo Dell Wang Tianyou Zhai Huiqiao Li 《Science China Materials》 SCIE EI CSCD 2017年第10期918-928,共11页
Exploring and designing bi-functional catalysts with earth-abundant elements that can work well for both hydrogen evolution reaction(HER) and oxygen evolution reaction(OER) in alkaline medium are of significance f... Exploring and designing bi-functional catalysts with earth-abundant elements that can work well for both hydrogen evolution reaction(HER) and oxygen evolution reaction(OER) in alkaline medium are of significance for producing clean fuel to relieve energy and environment crisis.Here,a novel Ni/NiO monolithic electrode was developed by a facile and cost-effective acid promoted activation of Ni foam.After the treatment,this obtained monolithic electrode with a layer of NiO on its surface demonstrates rough and sheet-like morphology,which not only possesses larger accessible surface area but also provides more reactive active sites. Compared with powder catalysts,this monolithic electrode can achieve intimate contact between the electrocatalyst and the current collector,which will alleviate the problem of pulverization and enable the stable function of the electrode. It can be served as an efficient bi-functional electrocatalyst with an overpotential of 160 mV for HER and 290 mV for OER to produce current densities of 10 mA cm^(-2) in the alkaline medium. And it maintains benign stability after 5,000 cycles,which rivals many recent reported noble-metal free catalysts in 1.0mol L^(-1) KOH solution. Attributed to the easy,scalable methodology and high catalytic efficiency,this work not only offers a promising monolithic catalyst but also inspires us to exploit other inexpensive,highly efficient and self-standing noble metalfree electrocatalysts for scale-up electrochemical water-splitting technology. 展开更多
关键词 ELECTROCATALYSIS bi-functional acid promoted activation Ni/NiO water splitting monolithic electrode
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部