期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
A spatiotemporal signal processing technique for wafer-scale IC thermomechanical stress monitoring by an infrared camera
1
作者 Michel Saydé Ahmed Lakhssassi +1 位作者 Emmanuel Kengne Roman Palenichka 《Journal of Biosciences and Medicines》 2013年第2期1-5,共5页
In this paper, we describe a new silicon-die thermal monitoring approach using spatiotemporal signal processing technique for Wafer-Scale IC thermome- chanical stress monitoring. It is proposed in the context of a waf... In this paper, we describe a new silicon-die thermal monitoring approach using spatiotemporal signal processing technique for Wafer-Scale IC thermome- chanical stress monitoring. It is proposed in the context of a wafer-scale-based (WaferICTM) rapid prototyping platform for electronic systems. This technique will be embedded into the structure of the WaferIC, and will be used as a preventive measure to protect the wafer from possible damages that can be caused by excessive thermomechanical stress. The paper also presents spatial and spatiotemporal algorithms and the experimental results from an IR images collection campaign conducted using an IR camera. 展开更多
关键词 THERMAL Monitoring Ring Oscillator (RO) Spatial SPATIOTEMPORAL THERMO-MECHANICAL Stress Temperature Sensor THERMAL Analysis WaferIC Wafer-Scale System
下载PDF
A Secure Framework for WSN-IoT Using Deep Learning for Enhanced Intrusion Detection
2
作者 Chandraumakantham Om Kumar Sudhakaran Gajendran +2 位作者 Suguna Marappan Mohammed Zakariah Abdulaziz S.Almazyad 《Computers, Materials & Continua》 SCIE EI 2024年第10期471-501,共31页
The security of the wireless sensor network-Internet of Things(WSN-IoT)network is more challenging due to its randomness and self-organized nature.Intrusion detection is one of the key methodologies utilized to ensure... The security of the wireless sensor network-Internet of Things(WSN-IoT)network is more challenging due to its randomness and self-organized nature.Intrusion detection is one of the key methodologies utilized to ensure the security of the network.Conventional intrusion detection mechanisms have issues such as higher misclassification rates,increased model complexity,insignificant feature extraction,increased training time,increased run time complexity,computation overhead,failure to identify new attacks,increased energy consumption,and a variety of other factors that limit the performance of the intrusion system model.In this research a security framework for WSN-IoT,through a deep learning technique is introduced using Modified Fuzzy-Adaptive DenseNet(MF_AdaDenseNet)and is benchmarked with datasets like NSL-KDD,UNSWNB15,CIDDS-001,Edge IIoT,Bot IoT.In this,the optimal feature selection using Capturing Dingo Optimization(CDO)is devised to acquire relevant features by removing redundant features.The proposed MF_AdaDenseNet intrusion detection model offers significant benefits by utilizing optimal feature selection with the CDO algorithm.This results in enhanced Detection Capacity with minimal computation complexity,as well as a reduction in False Alarm Rate(FAR)due to the consideration of classification error in the fitness estimation.As a result,the combined CDO-based feature selection and MF_AdaDenseNet intrusion detection mechanism outperform other state-of-the-art techniques,achieving maximal Detection Capacity,precision,recall,and F-Measure of 99.46%,99.54%,99.91%,and 99.68%,respectively,along with minimal FAR and Mean Absolute Error(MAE)of 0.9%and 0.11. 展开更多
关键词 Deep learning intrusion detection fuzzy rules feature selection false alarm rate accuracy wireless sensor networks
下载PDF
CDEC:a constrained deep embedded clustering
3
作者 Elham Amirizadeh Reza Boostani 《International Journal of Intelligent Computing and Cybernetics》 EI 2021年第4期686-701,共16页
Purpose-The aim of this study is to propose a deep neural network(DNN)method that uses side information to improve clustering results for big datasets;also,the authors show that applying this information improves the ... Purpose-The aim of this study is to propose a deep neural network(DNN)method that uses side information to improve clustering results for big datasets;also,the authors show that applying this information improves the performance of clustering and also increase the speed of the network training convergence.Design/methodology/approach-In data mining,semisupervised learning is an interesting approach because good performance can be achieved with a small subset of labeled data;one reason is that the data labeling is expensive,and semisupervised learning does not need all labels.One type of semisupervised learning is constrained clustering;this type of learning does not use class labels for clustering.Instead,it uses information of some pairs of instances(side information),and these instances maybe are in the same cluster(must-link[ML])or in different clusters(cannot-link[CL]).Constrained clustering was studied extensively;however,little works have focused on constrained clustering for big datasets.In this paper,the authors have presented a constrained clustering for big datasets,and the method uses a DNN.The authors inject the constraints(ML and CL)to this DNN to promote the clustering performance and call it constrained deep embedded clustering(CDEC).In this manner,an autoencoder was implemented to elicit informative low dimensional features in the latent space and then retrain the encoder network using a proposed Kullback-Leibler divergence objective function,which captures the constraints in order to cluster the projected samples.The proposed CDEC has been compared with the adversarial autoencoder,constrained 1-spectral clustering and autoencoder t k-means was applied to the known MNIST,Reuters-10k and USPS datasets,and their performance were assessed in terms of clustering accuracy.Empirical results confirmed the statistical superiority of CDEC in terms of clustering accuracy to the counterparts.Findings-First of all,this is the first DNN-constrained clustering that uses side information to improve the performance of clustering without using labels in big datasets with high dimension.Second,the author defined a formula to inject side information to the DNN.Third,the proposed method improves clustering performance and network convergence speed.Originality/value-Little works have focused on constrained clustering for big datasets;also,the studies in DNNs for clustering,with specific loss function that simultaneously extract features and clustering the data,are rare.The method improves the performance of big data clustering without using labels,and it is important because the data labeling is expensive and time-consuming,especially for big datasets. 展开更多
关键词 Deep neural networks CLUSTERING Constrained clustering Big data Denoising autoencoder Kullback-Leibler divergence Constrained deep embedded clustering(CDEC)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部