A termetallic catalyst of Pt-Ir-Au/Al2O3 for NOx decomposition was prepared by loading the metallic colloids in C2H5OH-H2O solution and a surfactant of polyvinyl pyrrolidone.Compared with an impregnated Pt/Al2O3 catal...A termetallic catalyst of Pt-Ir-Au/Al2O3 for NOx decomposition was prepared by loading the metallic colloids in C2H5OH-H2O solution and a surfactant of polyvinyl pyrrolidone.Compared with an impregnated Pt/Al2O3 catalyst,the termetallic catalyst of PtIrAu811/Al2O3,with a Pt:Ir:Au atomic ratio of 8:1:1,exhibited higher NO decomposition and selectivity to N2.Transmission electron microscopy and X-ray diffraction were conducted to clarify the state of the supported metals and indicate three precious metals alloyed on the catalyst.In the study of NO-temperature programmed desorption,oxygen desorption on the PtIrAu811 catalyst shifted to the low temperature side compared to that on Pt/Al2O3,which correlated well with its higher catalytic performance in NO decomposition.展开更多
Several authors have shown the beneficial role to incorporate silicon into hydroxyapatite lattice, although, the mechanism behind the enhanced bioactivity of this Si-hydroxyapatite (Si-HA) is poorly understood. The in...Several authors have shown the beneficial role to incorporate silicon into hydroxyapatite lattice, although, the mechanism behind the enhanced bioactivity of this Si-hydroxyapatite (Si-HA) is poorly understood. The incorporation of Si into the HA lattice alters the surface charge of HA, leading to more negative values. Due to the importance of the surface properties on the interaction between biomaterials, physiological fluids, and the host tissue, it is important to further characterize the surface of Si-HA by determining its surface energy and wettability. Our results showed that the incorporation of Si increased the hydrophilicity of HA, leading to a higher interfacial tension. Another important property for osteointegration is the formation of an apatite layer. The dissolution of Si-HA in the presence of serum-free simulated body fluid (SBF) started at early time points and using atomic force microscopy (AFM) it was possible to observe the dissolution at the grain boundaries and grains, therefore an apatite layer was formed in a short period of time. As the dissolution-precipitation process is much more complex in vivo, we tried to mimic the initial stages of the in vivo reaction by incubating the Si-HA in serum-SBF. It was shown that the dissolution kinetics in serum-SBF was slower when compared to the dissolution in serum free-SBF. At the same time point, no significant dissolution features were observed or apatite layer was visualized. The phase imaging AFM indicated the presence of a layer on top of these materials that could be a proteinaceous layer, as XPS analysis detected an increase on the concentration of nitrogen on the surface of the samples incubated in the presence of proteins.展开更多
文摘A termetallic catalyst of Pt-Ir-Au/Al2O3 for NOx decomposition was prepared by loading the metallic colloids in C2H5OH-H2O solution and a surfactant of polyvinyl pyrrolidone.Compared with an impregnated Pt/Al2O3 catalyst,the termetallic catalyst of PtIrAu811/Al2O3,with a Pt:Ir:Au atomic ratio of 8:1:1,exhibited higher NO decomposition and selectivity to N2.Transmission electron microscopy and X-ray diffraction were conducted to clarify the state of the supported metals and indicate three precious metals alloyed on the catalyst.In the study of NO-temperature programmed desorption,oxygen desorption on the PtIrAu811 catalyst shifted to the low temperature side compared to that on Pt/Al2O3,which correlated well with its higher catalytic performance in NO decomposition.
基金The authors acknowledge Fundacao para a Ciencia e Tecnologia,Portugal,for supporting Claudia Botelho grant(SFRHBPD/20987/2004).
文摘Several authors have shown the beneficial role to incorporate silicon into hydroxyapatite lattice, although, the mechanism behind the enhanced bioactivity of this Si-hydroxyapatite (Si-HA) is poorly understood. The incorporation of Si into the HA lattice alters the surface charge of HA, leading to more negative values. Due to the importance of the surface properties on the interaction between biomaterials, physiological fluids, and the host tissue, it is important to further characterize the surface of Si-HA by determining its surface energy and wettability. Our results showed that the incorporation of Si increased the hydrophilicity of HA, leading to a higher interfacial tension. Another important property for osteointegration is the formation of an apatite layer. The dissolution of Si-HA in the presence of serum-free simulated body fluid (SBF) started at early time points and using atomic force microscopy (AFM) it was possible to observe the dissolution at the grain boundaries and grains, therefore an apatite layer was formed in a short period of time. As the dissolution-precipitation process is much more complex in vivo, we tried to mimic the initial stages of the in vivo reaction by incubating the Si-HA in serum-SBF. It was shown that the dissolution kinetics in serum-SBF was slower when compared to the dissolution in serum free-SBF. At the same time point, no significant dissolution features were observed or apatite layer was visualized. The phase imaging AFM indicated the presence of a layer on top of these materials that could be a proteinaceous layer, as XPS analysis detected an increase on the concentration of nitrogen on the surface of the samples incubated in the presence of proteins.