Amid the landscape of Cloud Computing(CC),the Cloud Datacenter(DC)stands as a conglomerate of physical servers,whose performance can be hindered by bottlenecks within the realm of proliferating CC services.A linchpin ...Amid the landscape of Cloud Computing(CC),the Cloud Datacenter(DC)stands as a conglomerate of physical servers,whose performance can be hindered by bottlenecks within the realm of proliferating CC services.A linchpin in CC’s performance,the Cloud Service Broker(CSB),orchestrates DC selection.Failure to adroitly route user requests with suitable DCs transforms the CSB into a bottleneck,endangering service quality.To tackle this,deploying an efficient CSB policy becomes imperative,optimizing DC selection to meet stringent Qualityof-Service(QoS)demands.Amidst numerous CSB policies,their implementation grapples with challenges like costs and availability.This article undertakes a holistic review of diverse CSB policies,concurrently surveying the predicaments confronted by current policies.The foremost objective is to pinpoint research gaps and remedies to invigorate future policy development.Additionally,it extensively clarifies various DC selection methodologies employed in CC,enriching practitioners and researchers alike.Employing synthetic analysis,the article systematically assesses and compares myriad DC selection techniques.These analytical insights equip decision-makers with a pragmatic framework to discern the apt technique for their needs.In summation,this discourse resoundingly underscores the paramount importance of adept CSB policies in DC selection,highlighting the imperative role of efficient CSB policies in optimizing CC performance.By emphasizing the significance of these policies and their modeling implications,the article contributes to both the general modeling discourse and its practical applications in the CC domain.展开更多
Neuroimaging has emerged over the last few decades as a crucial tool in diagnosing Alzheimer’s disease(AD).Mild cognitive impairment(MCI)is a condition that falls between the spectrum of normal cognitive function and...Neuroimaging has emerged over the last few decades as a crucial tool in diagnosing Alzheimer’s disease(AD).Mild cognitive impairment(MCI)is a condition that falls between the spectrum of normal cognitive function and AD.However,previous studies have mainly used handcrafted features to classify MCI,AD,and normal control(NC)individuals.This paper focuses on using gray matter(GM)scans obtained through magnetic resonance imaging(MRI)for the diagnosis of individuals with MCI,AD,and NC.To improve classification performance,we developed two transfer learning strategies with data augmentation(i.e.,shear range,rotation,zoom range,channel shift).The first approach is a deep Siamese network(DSN),and the second approach involves using a cross-domain strategy with customized VGG-16.We performed experiments on the Alzheimer’s Disease Neuroimaging Initiative(ADNI)dataset to evaluate the performance of our proposed models.Our experimental results demonstrate superior performance in classifying the three binary classification tasks:NC vs.AD,NC vs.MCI,and MCI vs.AD.Specifically,we achieved a classification accuracy of 97.68%,94.25%,and 92.18%for the three cases,respectively.Our study proposes two transfer learning strategies with data augmentation to accurately diagnose MCI,AD,and normal control individuals using GM scans.Our findings provide promising results for future research and clinical applications in the early detection and diagnosis of AD.展开更多
Social distancing during COVID-19 has become one of the most important measures in reducing the risks of the spread of the virus. Implementing thesemeasures at universities is crucial and directly related to the phys...Social distancing during COVID-19 has become one of the most important measures in reducing the risks of the spread of the virus. Implementing thesemeasures at universities is crucial and directly related to the physical attendance ofthe populations of students, professors, employees, and other members on campus. This research proposes an automated scheduling approach that can help universities and schools comply with the social distancing regulations by providingassistance in avoiding huge assemblages of people. Furthermore, this paper proposes a novel course timetable-scheduling scheme based on four main constraints.First, a distance of two meters must be maintained between each student inside theclassroom. Second, no classrooms should contain more than 20% of their regularcapacity. Third, there would be no back-to-back classes. Lastly, no lectures shouldbe held simultaneously in adjacent classrooms. The proposed approach wasimplemented using a variable neighborhood search (VNS) approach with an adaptive neighborhood structure (AD-NS) to resolve the problem of scheduling coursetimetables at Al-Ahlyyia Amman University. However, the experimental resultsshow that the proposed techniques outperformed the standard VNS tested on university course timetabling benchmark dataset ITC2007-Track3. Meanwhile, theapproach was tested using datasets collected from the faculty of information technology at Al-Ahlyyia Amman University (Jordan). Where the results showed that,the proposed technique could help educational institutes to resume their regularoperations while complying with the social distancing guidelines.展开更多
文摘Amid the landscape of Cloud Computing(CC),the Cloud Datacenter(DC)stands as a conglomerate of physical servers,whose performance can be hindered by bottlenecks within the realm of proliferating CC services.A linchpin in CC’s performance,the Cloud Service Broker(CSB),orchestrates DC selection.Failure to adroitly route user requests with suitable DCs transforms the CSB into a bottleneck,endangering service quality.To tackle this,deploying an efficient CSB policy becomes imperative,optimizing DC selection to meet stringent Qualityof-Service(QoS)demands.Amidst numerous CSB policies,their implementation grapples with challenges like costs and availability.This article undertakes a holistic review of diverse CSB policies,concurrently surveying the predicaments confronted by current policies.The foremost objective is to pinpoint research gaps and remedies to invigorate future policy development.Additionally,it extensively clarifies various DC selection methodologies employed in CC,enriching practitioners and researchers alike.Employing synthetic analysis,the article systematically assesses and compares myriad DC selection techniques.These analytical insights equip decision-makers with a pragmatic framework to discern the apt technique for their needs.In summation,this discourse resoundingly underscores the paramount importance of adept CSB policies in DC selection,highlighting the imperative role of efficient CSB policies in optimizing CC performance.By emphasizing the significance of these policies and their modeling implications,the article contributes to both the general modeling discourse and its practical applications in the CC domain.
基金Research work funded by Zhejiang Normal University Research Fund YS304023947 and YS304023948.
文摘Neuroimaging has emerged over the last few decades as a crucial tool in diagnosing Alzheimer’s disease(AD).Mild cognitive impairment(MCI)is a condition that falls between the spectrum of normal cognitive function and AD.However,previous studies have mainly used handcrafted features to classify MCI,AD,and normal control(NC)individuals.This paper focuses on using gray matter(GM)scans obtained through magnetic resonance imaging(MRI)for the diagnosis of individuals with MCI,AD,and NC.To improve classification performance,we developed two transfer learning strategies with data augmentation(i.e.,shear range,rotation,zoom range,channel shift).The first approach is a deep Siamese network(DSN),and the second approach involves using a cross-domain strategy with customized VGG-16.We performed experiments on the Alzheimer’s Disease Neuroimaging Initiative(ADNI)dataset to evaluate the performance of our proposed models.Our experimental results demonstrate superior performance in classifying the three binary classification tasks:NC vs.AD,NC vs.MCI,and MCI vs.AD.Specifically,we achieved a classification accuracy of 97.68%,94.25%,and 92.18%for the three cases,respectively.Our study proposes two transfer learning strategies with data augmentation to accurately diagnose MCI,AD,and normal control individuals using GM scans.Our findings provide promising results for future research and clinical applications in the early detection and diagnosis of AD.
文摘Social distancing during COVID-19 has become one of the most important measures in reducing the risks of the spread of the virus. Implementing thesemeasures at universities is crucial and directly related to the physical attendance ofthe populations of students, professors, employees, and other members on campus. This research proposes an automated scheduling approach that can help universities and schools comply with the social distancing regulations by providingassistance in avoiding huge assemblages of people. Furthermore, this paper proposes a novel course timetable-scheduling scheme based on four main constraints.First, a distance of two meters must be maintained between each student inside theclassroom. Second, no classrooms should contain more than 20% of their regularcapacity. Third, there would be no back-to-back classes. Lastly, no lectures shouldbe held simultaneously in adjacent classrooms. The proposed approach wasimplemented using a variable neighborhood search (VNS) approach with an adaptive neighborhood structure (AD-NS) to resolve the problem of scheduling coursetimetables at Al-Ahlyyia Amman University. However, the experimental resultsshow that the proposed techniques outperformed the standard VNS tested on university course timetabling benchmark dataset ITC2007-Track3. Meanwhile, theapproach was tested using datasets collected from the faculty of information technology at Al-Ahlyyia Amman University (Jordan). Where the results showed that,the proposed technique could help educational institutes to resume their regularoperations while complying with the social distancing guidelines.