The mobile transient and sensor network’s routing algorithm detects available multi-hop paths between source and destination nodes.However,some methods are not as reliable or trustworthy as expected.Therefore,finding...The mobile transient and sensor network’s routing algorithm detects available multi-hop paths between source and destination nodes.However,some methods are not as reliable or trustworthy as expected.Therefore,finding a reliable method is an important factor in improving communication security.For further enhancement of protected communication,we suggest a trust cluster based secure routing(TCSR)framework for wireless sensor network(WSN)using optimization algorithms.First,we introduce an efficient cluster formation using a modified tug of war optimization(MTWO)algorithm,which provides loadbalanced clusters for energy-efficient data transmission.Second,we illustrate the optimal head selection using multiple design constraints received signal strength,congestion rate,data loss rate,and throughput of the node.Those parameters are optimized by a butterfly optimal deep neural network(BO-DNN),which provides first-level security towards the selection of the best head node.Third,we utilize the lightweight signcryption to encrypt the data between two nodes during data transmission,which provides second-level security.The model provides an estimation of the trust level of each route to help a source node to select the most secure one.The nodes of the network improve reliability and security by maintaining the reliability component.Simulation results showed that the proposed scheme achieved 45.6%of delivery ratio.展开更多
An efficient drain current simulation model for the electron irradiation effect on the electrical parameters of amorphous In–Ga–Zn–O(IGZO) thin-film transistors is developed. The model is developed based on the s...An efficient drain current simulation model for the electron irradiation effect on the electrical parameters of amorphous In–Ga–Zn–O(IGZO) thin-film transistors is developed. The model is developed based on the specifications such as gate capacitance, channel length, channel width, flat band voltage etc. Electrical parameters of un-irradiated IGZO samples were simulated and compared with the experimental parameters and 1 kGy electron irradiated parameters. The effect of electron irradiation on the IGZO sample was analysed by developing a mathematical model.展开更多
文摘The mobile transient and sensor network’s routing algorithm detects available multi-hop paths between source and destination nodes.However,some methods are not as reliable or trustworthy as expected.Therefore,finding a reliable method is an important factor in improving communication security.For further enhancement of protected communication,we suggest a trust cluster based secure routing(TCSR)framework for wireless sensor network(WSN)using optimization algorithms.First,we introduce an efficient cluster formation using a modified tug of war optimization(MTWO)algorithm,which provides loadbalanced clusters for energy-efficient data transmission.Second,we illustrate the optimal head selection using multiple design constraints received signal strength,congestion rate,data loss rate,and throughput of the node.Those parameters are optimized by a butterfly optimal deep neural network(BO-DNN),which provides first-level security towards the selection of the best head node.Third,we utilize the lightweight signcryption to encrypt the data between two nodes during data transmission,which provides second-level security.The model provides an estimation of the trust level of each route to help a source node to select the most secure one.The nodes of the network improve reliability and security by maintaining the reliability component.Simulation results showed that the proposed scheme achieved 45.6%of delivery ratio.
文摘An efficient drain current simulation model for the electron irradiation effect on the electrical parameters of amorphous In–Ga–Zn–O(IGZO) thin-film transistors is developed. The model is developed based on the specifications such as gate capacitance, channel length, channel width, flat band voltage etc. Electrical parameters of un-irradiated IGZO samples were simulated and compared with the experimental parameters and 1 kGy electron irradiated parameters. The effect of electron irradiation on the IGZO sample was analysed by developing a mathematical model.