期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Data-Driven Fitting of the G/G/1 Queue
1
作者 Nanne A.Dieleman 《Journal of Systems Science and Systems Engineering》 SCIE EI CSCD 2021年第1期17-28,共12页
The Maximum Likelihood Estimation(MLE)method is an established statistical method to estimate unknown parameters of a distribution.A disadvantage of the MLE method is that it requires an analytically tractable density... The Maximum Likelihood Estimation(MLE)method is an established statistical method to estimate unknown parameters of a distribution.A disadvantage of the MLE method is that it requires an analytically tractable density,which is not available in many cases.This is the case,for example,with applications in service systems,since waiting models from queueing theory typically have no closed-form solution for the underlying density.This problem is addressed in this paper.MLE is used in combination with Stochastic Approximation(SA)to calibrate the arrival parameterθof a G/G/1 queue via waiting time data.Three different numerical examples illustrate the application of the proposed estimator.Data sets of an M/G/1 queue,G/M/1 queue and model mismatch are considered.In a model mismatch,a mismatch is present between the used data and the postulated queuing model.The results indicate that the estimator is versatile and can be applied in many different scenarios. 展开更多
关键词 G/G/1 queue maximum likelihood estimation stochastic approximation data-driven fitting
原文传递
Efficient learning for decomposing and optimizing random networks
2
作者 Haidong Li Yijie Peng +2 位作者 Xiaoyun Xu Bernd FHeidergott Chun-Hung Chen 《Fundamental Research》 CAS 2022年第3期487-495,共9页
In this study,we consider the problem of node ranking in a random network.A Markov chain is defined for the network,and its transition probability matrix is unknown but can be learned by sampling random interactions a... In this study,we consider the problem of node ranking in a random network.A Markov chain is defined for the network,and its transition probability matrix is unknown but can be learned by sampling random interactions among nodes.Our objective is to decompose the Markov chain into several ergodic classes and select the best node in each ergodic class.We propose a dynamic sampling procedure,which gives a probability guarantee on correct decomposition and maximizes a weighted probability of correct selection of the best node in each ergodic class.Numerical experiment results demonstrate the efficiency of the proposed sampling procedure. 展开更多
关键词 Bayesian learning Random network Markov chain Dynamic decomposition Ranking and selection
原文传递
合作博弈的一致认可值(英文)
3
作者 Yuan Ju 《产业经济评论(山东)》 2005年第1期25-56,共32页
本文对联盟结构博弈的一致认可值及应用问题进行了分析。这个与一致认可值相关的概念和定理在本文得到扩展。这种价值作为惟一的方程的特点是,满足有效性、完全对称性等特点。通过财富转移,第二个特征被提供出来。而且这种解不仅在一些... 本文对联盟结构博弈的一致认可值及应用问题进行了分析。这个与一致认可值相关的概念和定理在本文得到扩展。这种价值作为惟一的方程的特点是,满足有效性、完全对称性等特点。通过财富转移,第二个特征被提供出来。而且这种解不仅在一些条件下能够满足个人理性(IR)条件,而且在合作效应和外部性两者之间,能够做到较好的权衡,从而提供了一种有意义的分配共享程序。一个一致认可值的一般解被进一步探讨。最后给出了两个一致认可值的应用:一个是联盟结构中的寡占博奕,一个是关于搭便车者的激励。 展开更多
关键词 合作博弈 联盟结构 有形价值 一致认可值
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部