This paper presents an adaptive neuro fuzzy interference system (ANFIS) based approach to tune the parameters of the static synchronous compensator (STAT- COM) with frequent disturbances in load model and power in...This paper presents an adaptive neuro fuzzy interference system (ANFIS) based approach to tune the parameters of the static synchronous compensator (STAT- COM) with frequent disturbances in load model and power input of a wind-diesel based isolated hybrid power system (IHPS). In literature, proportional integral (PI) based controller constants are optimized for voltage stability in hybrid systems due to the interaction of load disturbances and input power disturbances. These conventional controlling techniques use the integral square error (ISE) criterion with an open loop load model. An ANFIS tuned constants of a STATCOM controller for controlling the reactive power requirement to stabilize the voltage variation is proposed in the paper. Moreover, the interaction between the load and the isolated power system is developed in terms of closed loop load interaction with the system. Furthermore, a comparison of transient responses of IHPS is also presented when the system has only the STATCOM and the static compensation requirement of the induction generator is fulfilled by the fixed capacitor, dynamic compensation requirement, meanwhile, is fulfilled by STATCOM. The model is tested for a 1% step increase in reactive power load demand at t = 0 s and then a sudden change of 3% from the 1% at t = 0.01 s for a 1% step increase in power input at variable wind speed model.展开更多
Agents are intelligent entities that act flexibly and autonomously and make wise decisions based on their intelligence and experience.A multi-agent system(MAS)contains multiple,intelligent,and interconnected collabora...Agents are intelligent entities that act flexibly and autonomously and make wise decisions based on their intelligence and experience.A multi-agent system(MAS)contains multiple,intelligent,and interconnected collaborating agents for solving a problem beyond the ability of a single agent.A smart grid(SG)combines advanced intelligent systems,control techniques,and sensing methods with an existing utility power network.For controlling smart grids,various control systems with different architectures have already been developed.MAS-based control of power system operations has been shown to overcome the limitations of time required for analysis,relaying,and protection;transmission switching;communication protocols;and management of plant control.These systems provide an alternative for fast and accurate power network control.This paper provides a comprehensive overview of MASs used for the control of smart grids.The paper provides a wide-spectrum view of the status of smart grids,MAS-based control techniques and their implementation for the control of smart grids.Use of MASs in the control of various aspects of smart grids-including the management of energy,marketing energy,pricing,scheduling energy,reliability,network security,fault handling capability,communication between agents,SG-electrical vehicles,SG-building energy systems,and soft grids—have been critically reviewed.More than a hundred publications on the topic of MAS-based control of smart grids have been critically examined,classified,and arranged for fast reference.展开更多
This paper introduces an algorithm based on wavelet packet supported fast kurtogram and decision rules for the identification and classification of complex power quality(PQ)disturbances.Features are extracted from the...This paper introduces an algorithm based on wavelet packet supported fast kurtogram and decision rules for the identification and classification of complex power quality(PQ)disturbances.Features are extracted from the signals using fast kurtogram,envelope of filtered voltage signal and amplitude spectrum of squared envelop.Proposed algorithm can be implemented for the recognition of the complex PQ disturbances,which include the combination of voltage sag and harmonics,voltage momentary interruption(MI)and oscillatory transient(OT),voltage MI and harmonics,voltage sag and impulsive transient(IT),voltage sag,OT,IT and harmonics.Proposed work has been performed using the MATLAB software.Performance of the algorithm is compared with performance of algorithm supported by discrete wavelet transform(DWT)and fuzzy C-means clustering(FCM).展开更多
文摘This paper presents an adaptive neuro fuzzy interference system (ANFIS) based approach to tune the parameters of the static synchronous compensator (STAT- COM) with frequent disturbances in load model and power input of a wind-diesel based isolated hybrid power system (IHPS). In literature, proportional integral (PI) based controller constants are optimized for voltage stability in hybrid systems due to the interaction of load disturbances and input power disturbances. These conventional controlling techniques use the integral square error (ISE) criterion with an open loop load model. An ANFIS tuned constants of a STATCOM controller for controlling the reactive power requirement to stabilize the voltage variation is proposed in the paper. Moreover, the interaction between the load and the isolated power system is developed in terms of closed loop load interaction with the system. Furthermore, a comparison of transient responses of IHPS is also presented when the system has only the STATCOM and the static compensation requirement of the induction generator is fulfilled by the fixed capacitor, dynamic compensation requirement, meanwhile, is fulfilled by STATCOM. The model is tested for a 1% step increase in reactive power load demand at t = 0 s and then a sudden change of 3% from the 1% at t = 0.01 s for a 1% step increase in power input at variable wind speed model.
文摘Agents are intelligent entities that act flexibly and autonomously and make wise decisions based on their intelligence and experience.A multi-agent system(MAS)contains multiple,intelligent,and interconnected collaborating agents for solving a problem beyond the ability of a single agent.A smart grid(SG)combines advanced intelligent systems,control techniques,and sensing methods with an existing utility power network.For controlling smart grids,various control systems with different architectures have already been developed.MAS-based control of power system operations has been shown to overcome the limitations of time required for analysis,relaying,and protection;transmission switching;communication protocols;and management of plant control.These systems provide an alternative for fast and accurate power network control.This paper provides a comprehensive overview of MASs used for the control of smart grids.The paper provides a wide-spectrum view of the status of smart grids,MAS-based control techniques and their implementation for the control of smart grids.Use of MASs in the control of various aspects of smart grids-including the management of energy,marketing energy,pricing,scheduling energy,reliability,network security,fault handling capability,communication between agents,SG-electrical vehicles,SG-building energy systems,and soft grids—have been critically reviewed.More than a hundred publications on the topic of MAS-based control of smart grids have been critically examined,classified,and arranged for fast reference.
文摘This paper introduces an algorithm based on wavelet packet supported fast kurtogram and decision rules for the identification and classification of complex power quality(PQ)disturbances.Features are extracted from the signals using fast kurtogram,envelope of filtered voltage signal and amplitude spectrum of squared envelop.Proposed algorithm can be implemented for the recognition of the complex PQ disturbances,which include the combination of voltage sag and harmonics,voltage momentary interruption(MI)and oscillatory transient(OT),voltage MI and harmonics,voltage sag and impulsive transient(IT),voltage sag,OT,IT and harmonics.Proposed work has been performed using the MATLAB software.Performance of the algorithm is compared with performance of algorithm supported by discrete wavelet transform(DWT)and fuzzy C-means clustering(FCM).