期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Broadband all-fiber optical phase modulator based on photo-thermal effect in a gas-filled hollow-core fiber 被引量:1
1
作者 Shoulin Jiang Feifan Chen +4 位作者 Yan Zhao Shoufei Gao Yingying Wang Hoi Lut Ho Wei Jin 《Opto-Electronic Advances》 SCIE EI CAS CSCD 2023年第5期10-16,共7页
We report broadband all-fiber optical phase modulation based on the photo-thermal effect in a gas-filled hollow-core fiber.The phase modulation dynamics are studied by multi-physics simulation.A phase modulator is fab... We report broadband all-fiber optical phase modulation based on the photo-thermal effect in a gas-filled hollow-core fiber.The phase modulation dynamics are studied by multi-physics simulation.A phase modulator is fabricated using a 5.6-cm-long anti-resonant hollow-core fiber with pure acetylene filling.It has a half-wave optical power of 289 mW at 100 kHz and an average insertion loss 0.6 dB over a broad wavelength range from 1450 to 1650 nm.The rise and fall time constants are 3.5 and 3.7μs,respectively,2–3 orders of magnitude better than the previously reported microfiber-based photo-thermal phase modulators.The gas-filled hollow-core waveguide configuration is promising for optical phase modulation from ultraviolet to mid-infrared which is challenging to achieve with solid optical fibers. 展开更多
关键词 optical modulators photo-thermal effects hollow-core fibers
下载PDF
Slow-light-enhanced on-chip 1D and 2D photonic crystal waveguide gas sensing in near-IR with an ultrahigh interaction factor
2
作者 ZIHANG PENG YIJUN HUANG +10 位作者 KAIYUAN ZHENG CHUANTAO ZHENG MINGQUAN PI HUAN ZHAO JIALIN JI YUTING MIN LEI LIANG FANG SONG YU ZHANG YIDING WANG FRANK K.TITTEL 《Photonics Research》 SCIE EI CAS CSCD 2023年第10期1647-1656,共10页
Nanophotonic waveguides hold great promise to achieve chip-scale gas sensors. However, their performance is limited by a short light path and small light–analyte overlap. To address this challenge, silicon-based, slo... Nanophotonic waveguides hold great promise to achieve chip-scale gas sensors. However, their performance is limited by a short light path and small light–analyte overlap. To address this challenge, silicon-based, slow-lightenhanced gas-sensing techniques offer a promising approach. In this study, we experimentally investigated the slow light characteristics and gas-sensing performance of 1D and 2D photonic crystal waveguides(PCWs) in the near-IR(NIR) region. The proposed 2D PCW exhibited a high group index of up to 114, albeit with a high propagation loss. The limit of detection(LoD) for acetylene(C_(2)H_(2)) was 277 parts per million(ppm) for a1 mm waveguide length and an averaging time of 0.4 s. The 1D PCW shows greater application potential compared to the 2D PCW waveguide, with an interaction factor reaching up to 288%, a comparably low propagation loss of 10 dB/cm, and an LoD of 706 ppm at 0.4 s. The measured group indices of the 2D and 1D waveguides are104 and 16, respectively, which agree well with the simulation results. 展开更多
关键词 WAVEGUIDE LIGHT interaction
原文传递
Mid-infrared all-optical modulators based on an acetylene-filled hollow-core fiber 被引量:1
3
作者 Kaiyuan Zheng Shoulin Jiang +5 位作者 Feifan Chen Yan Zhao Shoufei Gao Yingying Wang Hoi Lut Ho Wei Jin 《Light(Advanced Manufacturing)》 2022年第4期86-93,共8页
We report all-optical mid-infrared phase and intensity modulators based on the photo-thermal effect in an acetylene-filled anti-resonant hollow-core fiber.Optical absorption of the control beam promotes the gas molecu... We report all-optical mid-infrared phase and intensity modulators based on the photo-thermal effect in an acetylene-filled anti-resonant hollow-core fiber.Optical absorption of the control beam promotes the gas molecules to a higher energy level,which induces localized heating through non-radiative relaxation and modulates the refractive index of the gas material and hence the accumulated phase of the signal beam propagating through the hollow-core fiber.By modulating the intensity of the control beam,the phase of the signal beam is modulated accordingly.By use of a 1.53μm near-infrared control beam,all-optical phase modulation up to 2.2πrad is experimentally demonstrated at the signal wavelength of 3.35μm.With the phase modulator placed in one arm of a Mach-Zehnder interferometer,intensity modulation with on-off ratio of 25 dB is achieved.The gas-filled hollow-core-fiber modulators could operate over an ultra-broad wavelength band from near-to mid-infrared and have promising application in mid-infrared photonic systems. 展开更多
关键词 Optical phase modulator MID-INFRARED Hollow-core fiber Mach-Zehnder interferometer Photothermal effect
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部