期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
A Novel Matlab-Based Underwater Acoustic Channel Simulator
1
作者 Zarnescu George 《通讯和计算机(中英文版)》 2013年第8期1131-1138,共8页
关键词 信道模拟器 MATLAB 水声信道 调制解调器 仿真算法 体系结构 精确建模 输入参数
下载PDF
Superelasticity and Tunable Thermal Expansion across a Wide Temperature Range 被引量:6
2
作者 Y.L. Hao H.L. Wang +8 位作者 T. Li J.M. Cairney A.V. Ceguerra Y.D. Wang Y. Wang D. Wang E.G. Obbard S.J. Li R. Yang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2016年第8期705-709,共5页
Materials that undergo a reversible change of crystal structure through martensitic transformation (MT) possess unusual functionalities including shape memory, superelasticity, and low/negative thermal ex- pansion. ... Materials that undergo a reversible change of crystal structure through martensitic transformation (MT) possess unusual functionalities including shape memory, superelasticity, and low/negative thermal ex- pansion. These properties have many advanced applications, such as actuators, sensors, and energy conversion, but are limited typically in a narrow temperature range of tens of Kelvin. Here we report that, by creating a nano-scale concentration modulation via phase separation, the MT can be rendered continuous by an in-situ elastic confinement mechanism. Through a model titanium alloy, we demon- strate that the elastically confined continuous MT has unprecedented properties, such as superelasticity from below 4.2 K to 500 K, fully tunable and stable thermal expansion, from positive, through zero, to negative, from below 4.2 K to 573 K, and high strength-to-modulus ratio across a wide temperature range. The elastic tuning on the MT, together with a significant extension of the crystal stability limit, provides new opportunities to explore advanced materials. 展开更多
关键词 Ti alloy Superelasticity Thermal expansion behavior Temperature characteristic
原文传递
Tuning thermal expansion by a continuing atomic rearrangement mechanism in a multifunctional titanium alloy 被引量:1
3
作者 D.L.Gong H.L.Wang +3 位作者 E.G.Obbard S.J.Li R.Yang Y.L.Hao 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第21期234-243,共10页
As to multifunctional titanium alloys with high strength and low elastic modulus, thermal training is crucial to tune their thermal expansion from positive to negative, resulting in a novel linear expansion which is s... As to multifunctional titanium alloys with high strength and low elastic modulus, thermal training is crucial to tune their thermal expansion from positive to negative, resulting in a novel linear expansion which is stable in a wide temperature range. Aided by the high-order Hooke's law of elastic solids,a reversible atomic rearrangement mechanism was proposed to explain the novel findings which are unexpected from typical shape memory alloys. To confirm this continuous mechanism, a Ti-Nb based alloy, which possesses a nanoscale spongy microstructure consisting of the interpenetrated Nb-rich and Nb-lean domains produced by spinodal decomposition, was used to trace the crystal structure change by in-situ high energy synchrotron X-ray diffraction analyses. By increasing exposure time, the overlapped diffraction peaks can be separated accurately. The calculated results demonstrate that, in the nanoscale Nb-lean domains, the crystal structure parameters vary linearly with changing temperature along the atomic pathway of the bcc-hcp transition. This linear relationship in a wide temperature range is unusual for first-order martensitic shape memory alloys but is common for Invar alloys with high-order spin transitions. Furthermore, the alloy exhibits smooth DSC curves free of transformation-induced heat peaks observed in shape memory alloys, which is consistent with the proposed mechanism that the reversible transition is of high-order. 展开更多
关键词 Coefficient of thermal expansion Multifunctional titanium alloys Spongy microstructure Atomic rearrangement Elastic anisotropy
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部