To evaluate the retention properties of the novel ‘C'-shaped molar bands at a laboratory level. Resin-modified glass ionomer cement(RMGIC) was used as a luting agent for the novel C-shaped molar band. The mechanic...To evaluate the retention properties of the novel ‘C'-shaped molar bands at a laboratory level. Resin-modified glass ionomer cement(RMGIC) was used as a luting agent for the novel C-shaped molar band. The mechanical properties of the band were examined and the retention performance was characterized in the mesial, distal and vertical directions. A clinical trial was conducted using a spilt-mouth design on 50 patients. The novel C-shaped molar bands fit most molars without a repeated try-in process.The use of both nanoHA coating and RMGIC enhanced the tensile(8.00 ± 1.8 MPa) and shear strengths(27.17 ± 8.6 MPa) of the molar bands, leading to high retention in vertical, mesial and distal directions( p 〈 0.001). In clinical trials, the C-shaped molar bands had a failure rate(15%) comparable to that of traditional bands, and 93% of the failed bands demonstrated an adhesive remnant index score of 0, corroborating the observation that no luting agent residue remained on the tooth surface in most cases. The novel C-shaped molar bands appear to be a promising appliance that requires further clinical investigations, and may be used effectively in orthodontics.展开更多
基金Funded by Department of Education,National Natural Science Foundation of China(No.81170960)Heilongjiang Province(No.11531204)+1 种基金Department of Health,Heilongjiang Province(No.2006-123)Youth Foundation of the Second Affiliated Hospital of Harbin Medical University(No.QN2006-13)
文摘To evaluate the retention properties of the novel ‘C'-shaped molar bands at a laboratory level. Resin-modified glass ionomer cement(RMGIC) was used as a luting agent for the novel C-shaped molar band. The mechanical properties of the band were examined and the retention performance was characterized in the mesial, distal and vertical directions. A clinical trial was conducted using a spilt-mouth design on 50 patients. The novel C-shaped molar bands fit most molars without a repeated try-in process.The use of both nanoHA coating and RMGIC enhanced the tensile(8.00 ± 1.8 MPa) and shear strengths(27.17 ± 8.6 MPa) of the molar bands, leading to high retention in vertical, mesial and distal directions( p 〈 0.001). In clinical trials, the C-shaped molar bands had a failure rate(15%) comparable to that of traditional bands, and 93% of the failed bands demonstrated an adhesive remnant index score of 0, corroborating the observation that no luting agent residue remained on the tooth surface in most cases. The novel C-shaped molar bands appear to be a promising appliance that requires further clinical investigations, and may be used effectively in orthodontics.