The ash contents in coal particles were examined in the paper dependably on particle size and its density. So, the two-dimensional regressive function Z = Z(P, D) was the searched object, where Z is random variable ...The ash contents in coal particles were examined in the paper dependably on particle size and its density. So, the two-dimensional regressive function Z = Z(P, D) was the searched object, where Z is random variable describing ash contents, P---density and D---particle diameter. This dependence was determined based on experimental data concerning the coal of type 31. For this coal, the method of ordinary kriging was applied to calculate the values of random variable Z. This method required the proper selection of so-called variogram function, in which four forms were considered in this paper in purpose to select the best solution. The given results were then evaluated by the mean standard error value and compared with empirical data.展开更多
文摘The ash contents in coal particles were examined in the paper dependably on particle size and its density. So, the two-dimensional regressive function Z = Z(P, D) was the searched object, where Z is random variable describing ash contents, P---density and D---particle diameter. This dependence was determined based on experimental data concerning the coal of type 31. For this coal, the method of ordinary kriging was applied to calculate the values of random variable Z. This method required the proper selection of so-called variogram function, in which four forms were considered in this paper in purpose to select the best solution. The given results were then evaluated by the mean standard error value and compared with empirical data.