Need for Alzheimer's disease progression monitoring:Alzheimer's disease(AD)is an irreversible progressive brain disorder that causes severe and incurable neuro-impairment.The World Health Organization estimate...Need for Alzheimer's disease progression monitoring:Alzheimer's disease(AD)is an irreversible progressive brain disorder that causes severe and incurable neuro-impairment.The World Health Organization estimates that 55 million people are affected by AD dementia by 2020 which may exceed 78 million by 2030 and 139 in 2050.The estimated cost to manage AD is above US$1.3 trillion,which will further increase to US$2.8 trillion by 2030.展开更多
Analyses of the characteristics and properties of biocoke fuel from several biomass wastes were carried out to determine the energy potential of the fuel.Biocoke production in this research uses heating and pressure m...Analyses of the characteristics and properties of biocoke fuel from several biomass wastes were carried out to determine the energy potential of the fuel.Biocoke production in this research uses heating and pressure methods simultaneously under constant conditions.Experimental results using thermogravimetric analysis show that biocoke empty-fruit-bunches(EFB)have a higher energy potential of 26.57 MJ/kg.Meanwhile,mangrove biocoke recorded the lowest ash content at 1.81%compared to EFB at 5.09%.The carbon content of mangrove biocoke is 58.02%,slightly higher than that of EFB,56.70%,but EFB is higher than that of other biomass.Overall,the energy content recorded in biocoke increased significantly compared to raw biomass.展开更多
This review describes the mechanisms of natural coagulants.It provides a good understanding of the two key processes of coagulation-flocculation:adsorption and charge neutralization,as well as adsorption and bridging....This review describes the mechanisms of natural coagulants.It provides a good understanding of the two key processes of coagulation-flocculation:adsorption and charge neutralization,as well as adsorption and bridging.Various factors have influence the coagulation/flocculation process,including the effect of pH,coagulant dosage,coagulant type,temperature,initial turbidity,coagulation speed,flocculation speed,coagulation and flocculation time,settling time,colloidal particles,zeta potential,the effects of humic acids,and extraction density are explained.The bio-coagulants derived from plants are outlined.The impact of organic coagulants on water quality,focusing on their effects on the physicochemical parameters of water,heavy metals removal,and bacteriological water quality,is examined.The methods of extraction and purification of plant-based coagulants,highlighting techniques such as solvent extraction and ultrasonic extraction,are discussed.It also examines the parameters that influence these processes.The methods and principles of purification of coagulating agents,including dialysis,freeze-drying,ion exchange,electrophoresis,filtration,and centrifugation,are listed.Finally,it evaluates the sustainability of natural coagulants,focusing on the environmental,technical,and economic aspects of their use.At the end of this review,the readers should have a comprehensive understanding of the mechanisms,selection,extraction,purification,and sustainability of plant-based natural coagulants in water treatment.展开更多
Objective:To investigate the distribution pattern of animal bites in Mirjaveh,Iran from 2015 to 2020.Methods:The data on animal bites were collected from the Department of Infectious Diseases,the provincial health cen...Objective:To investigate the distribution pattern of animal bites in Mirjaveh,Iran from 2015 to 2020.Methods:The data on animal bites were collected from the Department of Infectious Diseases,the provincial health center.Monthly climatic data on precipitation and temperature during the study period were also collected.The correlation between incidence and temperature,precipitation rate,land type,and altitude was also analyzed.Results:The results showed that men were more affected by animal bites than women(76.4%,P<0.001),and the highest incidence rate occurred in the age group of 5-19 years.The incidence rate of animal bites was found to be correlated with temperature and altitude.An increase in temperature was associated with a rise in the incidence rate of animal bites.The number of animal bites increased until 2019,possibly due to an increase in the number of dogs in the area.Conclusions:Targeted interventions should be implemented to reduce the incidence of animal bites,particularly among children,housewives,and students.Improving access to appropriate treatments,increasing public awareness of the hazards of animal bites,and increasing the number of vaccinated dogs in the area are essential strategies to be considered.展开更多
This work presents the development of hierarchical niobium pentoxide(Nb_(2)O_(5))-based composite nanofiber membranes for integrated adsorption and photocatalytic degradation of methylene blue(MB)pollutants from aqueo...This work presents the development of hierarchical niobium pentoxide(Nb_(2)O_(5))-based composite nanofiber membranes for integrated adsorption and photocatalytic degradation of methylene blue(MB)pollutants from aqueous solutions.The Nb_(2)O_(5) nanorods were vertically grown using a hydrothermal process on a base electrospun nanofibrous membrane made of polyacrylonitrile/polyvinylidene fluoride/ammonium niobate(V)oxalate hydrate(Nb_(2)O_(5)@PAN/PVDF/ANO).They were characterized using field-emission scanning electron microscopy(FE-SEM),X-ray diffraction(XRD)analysis,and Fourier transform infrared(FTIR)spectroscopy.These composite nanofibers possessed a narrow optical bandgap energy of 3.31 eV and demonstrated an MB degradation efficiency of 96%after 480 min contact time.The pseudo-first-order kinetic study was also conducted,in which Nb_(2)O_(5)@PAN/PVDF/ANO nanofibers have kinetic constant values of 1.29×10^(-2) min^(-1) and 0.30×10^(-2) min^(-1) for adsorption and photocatalytic degradation of MB aqueous solutions,respectively.These values are 17.7 and 7.8 times greater than those of PAN/PVDF/ANO nanofibers without Nb_(2)O_(5) nanostructures.Besides their outstanding photocatalytic performance,the developed membrane materials exhibit advantageous characteristics in recycling,which subsequently widen their practical use in environmental remediation applications.展开更多
This present research work focuses on the valorization of pig droppings for production of biogas in mono digestion and co-digestion with proportions of cow dung from the urban commune of N’Zérékoré. It...This present research work focuses on the valorization of pig droppings for production of biogas in mono digestion and co-digestion with proportions of cow dung from the urban commune of N’Zérékoré. It was carried out in December 2020 in the Physics laboratory of the University of N’Zérékoré. The anaerobic digestion process took 25 days in an almost constant ambient temperature of 25˚C. Five digesters were loaded on 12/06/2020, two of which with 1 kg of pig dung and 1 kg of cow dung both in mono-digestion. The 3 other digesters in co-digestion with different proportions of pig manure and cow dung. The substrate in each digester is diluted in 2 liters of water, with a proportion of (1/2). The main results obtained are: 1) the evolution of the temperature and pH during digestion process, 2) the average biogas productions 0.61 liters for (D1);1.20 liter for (D2);1.65 liter for (D3);1.51 liter for (D4) and 1.31 liter for (D5). The cumulative amounts of biogas are respectively: D1 (7.95 liters), D2 (15.60 liters), D3 (21.50 liters), D4 (19.65 liters) and D5 (17.05 liters). The total cumulative production is 81.75 liters at the end of the process. The originality of this research work is that the proposed model examines the relation between the daily biogas production and the variation of temperature, pH and pressure. The combustibility test showed the biogas produced during the first week was no combustible (contains less than 50% methane). Combustion started from the biogas produced from the 15th day and it is from the 20th day that a significant amount of stable yellow/blue flame was observed. The results of this study show the combination of pig manure and cow dung presents advantages for optimal biogas production.展开更多
While hydropower is generally considered a clean energy source, it is important to recognize that their waste can still contribute to greenhouse gas emissions (GHG). The purpose of this study is to assess the carbon f...While hydropower is generally considered a clean energy source, it is important to recognize that their waste can still contribute to greenhouse gas emissions (GHG). The purpose of this study is to assess the carbon footprint associated with the waste sector throughout the operational phase of the Nam Theun 2 hydropower plant in Laos. Understanding the environmental impact of the waste sector is crucial for ensuring the plant’s sustainability. This study utilizes the theoretical estimation method recommended in the 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories, as well as the Requirements for Specification with guidance at the organization level for quantification and reporting of GHG emissions and removals. We emphasize the significance of implementing sustainable waste management practices to reduce GHG emissions and minimize the environmental impact of hydropower operations. By conducting a comprehensive analysis, this paper also provides insights into the environmental implications of waste management in hydropower plants and identifies strategies to mitigate the carbon footprint in the waste sector. The findings contribute to a better understanding of the environmental sustainability of hydropower plants and provide valuable guidance for policymakers, energy producers, and environmental practitioners involved in hydropower plant design and operation.展开更多
Evaluation of assessment of the metal processes governing the metals distribution in soil and dust samples is very significant and protects the health of human and ecological system. Recently, special attention has gi...Evaluation of assessment of the metal processes governing the metals distribution in soil and dust samples is very significant and protects the health of human and ecological system. Recently, special attention has given to the assessment of metals pollution impact on soil and dust within industrial areas. This study aims to assess the metal contamination levels in the topsoil and street dust around the cement factory in Qadissiya area, southern Jordan. The levels of seven metals (namely Fe, Zn, Cu, Pb, Cr, Cd, and Mn) were analyzed using Flame Atomic Absorption Spec-trophotometer (FAAS) to monitor, evaluate, and to compare topsoil and road dust pollution values of metals of the different types of urban area. The physicochemical parameters which believed to affect the mobility of metals in the soil of the study area were determined such as pH, EC, TOM, CaCO3 and CEC. The levels of metal in soil samples are greater on the surface but decrease in the lower part as a result of the basic nature of soil. The mean values of the metals in soil can be arranged in the following order: Zn > Pb > Mn > Fe > Cu > Cr > Cd. The relatively high concentration of metals in the soil sample was attributed to anthropogenic activities such as traffic emissions, cement factory and agricultural activities. Correlation coefficient analysis and the spatial distribution of indices and the results of statistical analysis indicate three groups of metals: Fe and Mn result by natural origin, Zn, Pb, Cu and Zn result by anthropogenic origin (mainly motor vehicle traffic and abrasion of tires) while Cd is mixed origin. The higher content level values of metals of anthropogenic source in soil samples indicate that it is a source of contamination of air in the studied area. .展开更多
Bacterial populations isolated from treated soil,artificially contaminated with lead(Pb)and cadmium(Cd)and undergoing a phytoremediation process were studied to determine their potential application in soil remediatio...Bacterial populations isolated from treated soil,artificially contaminated with lead(Pb)and cadmium(Cd)and undergoing a phytoremediation process were studied to determine their potential application in soil remediation.The physicochemical parameters evaluated in the soil varied significantly.Ten bacterial strains were selected from each polluted soil to test tolerance and growth in contaminated media.The concentrations of heavy metals tested were 1,000 ppm for lead and 850 ppm for cadmium.These strains were morphologically identified through Gram staining.Four strains showing the most significant growth in both contaminants were then selected to verify their tolerance to different concentrations of heavy metals.The results demonstrated that the selected bacteria have high tolerance to Pb,resisting inhibition up to 2,000 ppm.In contrast,strains exposed to cadmium tended to slow their growth as the concentration increased.展开更多
In the past decades, two large scale coastal engineering projects have been carried out in the Deep Bay surrounded by Shenzhen City and Hong Kong Special Administrative Region. One project is Shenzhen River channel re...In the past decades, two large scale coastal engineering projects have been carried out in the Deep Bay surrounded by Shenzhen City and Hong Kong Special Administrative Region. One project is Shenzhen River channel regulation and the other is the sea reclamation along the seashore on the Shenzhen side. The two projects are very close to the two national nature reserves, specifically Futian in Shenzhen and Mai Po in Hong Kong, which are important wetland ecosystems worldwide. This paper aims to identify and monitor the mangrove wetland changes with time series of Landsat Thematic Mapper images pre and post to the two engineering projects being launched. Coupled analysis of the image interpretation results and tidal data acquired at the same time in the context of the two works reveals that the mangrove wetland area has increased from year 1989 to 1994, and has changed little from year 1994 to 2002. Binary coding is applied to reveal the distribution image of mangrove at each phase, and the coding image shows that the construction of the two coastal engineering projects has caused frequent changes in mangrove spatial distribution. The study also shows that the change is not significant regarding to the precision of the method and the natural evolution of mangrove wetland, and the projects do not cause apparently influences upon the two national mangrove conservation zones at least for the research time period.展开更多
Due to high demand and limited availability of rare earth elements (REEs), Europe is unable to meet its industrial needs, especially High Tech needs, today for the manufacturing sector. Therefore, the EU has included ...Due to high demand and limited availability of rare earth elements (REEs), Europe is unable to meet its industrial needs, especially High Tech needs, today for the manufacturing sector. Therefore, the EU has included them in the group of 14 critical minerals. China currently controls completely the mining activity, the enrichment technologies and metallurgy, and end-metal products of rare earths, resulting both Europe and the U.S.A. in full industrial dependency. The exploitation and wide use of REEs in fertilizers have led to accumulation of these elements in soils, resulting in an agriculture field pollution, which affects directly the soil microfauna with a toxic potential effect.展开更多
A hydrocarbon degrading bacterium KL2-13 was isolated from ten sites of oil contaminated soil in the Karamay oilfield. It was identified as the Bacillusfusiformis sp. bacterium based on its morphological and physiolog...A hydrocarbon degrading bacterium KL2-13 was isolated from ten sites of oil contaminated soil in the Karamay oilfield. It was identified as the Bacillusfusiformis sp. bacterium based on its morphological and physiological characteristics and the 16S rDNA sequence analysis. The factors influencing the hydrocarbon degradation by the bacterium KL2-13 were determined. The test results have showed that the hydrocarbon degrading bacterium KL2-13 requires an optimum pH range of 6-8, and the optimum inoculation quantity is 3%. The low-concentration metal ions Fe^2+, Mg^2+ and Ca^2+can improve the degradation ability of the bacteria KL2-13. A too low concentration of Tween-80 does not show obvious promotion to the degrading bacterium KL2-13, and an excessively high concentration can decrease the degradation ability of the bacterium, the best dosage of which is 2%. The hydrocarbon degrading rate reached 59.07%4-0.37% under the optimum culture conditions.展开更多
Novel graphitic carbon nitride(g-C_(3)N_(4))nanosheet/Bi_(5)O_(7)Br/NH_(2)-MIL-88B(Fe)photocatalysts(denoted as GCN-NSh/Bi_(5)O_(7)Br/FeMOF,in which MOF is metal–organic framework)with double S-scheme heterojunctions...Novel graphitic carbon nitride(g-C_(3)N_(4))nanosheet/Bi_(5)O_(7)Br/NH_(2)-MIL-88B(Fe)photocatalysts(denoted as GCN-NSh/Bi_(5)O_(7)Br/FeMOF,in which MOF is metal–organic framework)with double S-scheme heterojunctions were synthesized by a facile solvothermal route.The resultant materials were examined by X-ray photoelectron spectrometer(XPS),X-ray diffraction(XRD),scanning electron microscopy(SEM),energy dispersive X-ray spectroscopy(EDX),transmission electron microscopy(TEM),high-resolution transmission electron microscopy(HRTEM),photoluminescence spectroscopy(PL),Fourier transform infrared spectroscopy(FT-IR),UV-Vis diffuse reflection spectroscopy(UV-vis DRS),photocurrent density,electrochemical impedance spectroscopy(EIS),and Brunauer–Emmett–Teller(BET)analyses.After the integration of Fe-MOF with GCN-NSh/Bi_(5)O_(7)Br,the removal constant of tetracycline over the optimal GCN-NSh/Bi_(5)O_(7)Br/Fe-MOF(15wt%)nanocomposite was promoted 33 times compared with that of the pristine GCN.The GCN-NSh/Bi_(5)O_(7)Br/Fe-MOF(15wt%)nanocomposite showed superior photoactivity to azithromycin,metronidazole,and cephalexin removal that was 36.4,20.2,and 14.6 times higher than that of pure GCN,respectively.Radical quenching tests showed that·O_(2)-and h+mainly contributed to the elimination reaction.In addition,the nanocomposite maintained excellent activity after 4 successive cycles.Based on the developed n–n heterojunctions among n-GCN-NSh,n-Bi_(5)O_(7)Br,and n-Fe-MOF semiconductors,the double S-scheme charge transfer mechanism was proposed for the destruction of the selected antibiotics.展开更多
Ti3 AL-Nb-Mo composites were prepared by SHS using initial powder mixtures of Ti-Al-Nb-Mo and their corrosion and mechanical properties were studied to develop bioand environmental materials. The composites reached 99...Ti3 AL-Nb-Mo composites were prepared by SHS using initial powder mixtures of Ti-Al-Nb-Mo and their corrosion and mechanical properties were studied to develop bioand environmental materials. The composites reached 99.8% of theoretical density after the direct consolidation. The composites shows equiaxed primary a2 in a matrix of fine secondary a2 plates and ordered 82 (Bo) forming a basket weave structure. The strain rate sensitivity (m = dlnσ/dlne) at 2% strain is 0.008. Corrosion potential and corrosion rate of the composites formed by SHS were -151. 5m VSHE and 5. 72× 10^(-8)A/cm2 for Ti3 Al-10Nb-1. 5Mo and - 138.4m VSHE and 4. 12×10^(-8)cm2 for Ti3 Al-12Nb-1.5Mo in a 50% NaOH-10%FeCI3 solution, respectively. Corrosion resistance decreased with niobium content in the composites and chloride content in the aqueous solution. Selective corrosion of a2 phase in a matrix occurred in the corrosion environment which suggests that the corrosion potential and rate changes are related to the niobium content and Q2 phase in a matrix.展开更多
The increased use of scarce metals in combination with climate changes pave way for extensive extraction of mineral resources in Greenland. The focus of this study is on environmental ethical aspects of mining activit...The increased use of scarce metals in combination with climate changes pave way for extensive extraction of mineral resources in Greenland. The focus of this study is on environmental ethical aspects of mining activities in a vulnerable and unspoiled arctic nature. Mining can have several economic and social benefits for Greenland. On the other hand, the environmental impacts from mining are well known. Through DPSIR (Drivers, Pressures, States, Impacts, Responses) and Stakeholder analysis, we assess how future mining in Greenland can be sustainably implemented. The analysis revealed that numerous stakeholders have to be taken into consideration with a wide range of different interests. The DPSIR analysis clarified the availability of various potential political responses that could affect the drivers, pressures, states and impacts of mining mainly focused on implementation of effective environmental regulation strategies. Our findings revealed different environmental ethical dilemmas of which the most critical is how Greenland can open up for mining, gain economical revenue while averting destruction of unspoiled regions and aesthetic impairment. We recommend strict environmental legislation involving use of the "polluter pay principle", continuous monitoring of pollution and establishment of an industry-funded catastrophe trust fund. These initiatives can ensure economic benefits while environmental impacts remain negligible.展开更多
The main purpose of this study was to determine the changes in the water quality of Melendiz and Karasu streams, which recharge the Mamasin dam, and to evaluate its environmental impacts on the dam site that provides ...The main purpose of this study was to determine the changes in the water quality of Melendiz and Karasu streams, which recharge the Mamasin dam, and to evaluate its environmental impacts on the dam site that provides drinking water and irrigation demand in Aksaray city in the Central Anatolia of Turkey. The field researches were focused on estimating the main sources of contamination, determining and evaluating the changes in the water quality due to the direct wastewater discharges into the Melendiz and Karasu rivers, which recharge the Mamasin dam sites. During the study, water samples were collected from Melendiz and Karasu stream and Mamasin dam, and then, the physical and chemical analyses of water samples were conducted. The relevant in-situ and laboratory analyses were carried out during the dry and wet seasons. The results of the analyses showed that in term of the surface water quality criteria in terms of NO3-N value of both rivers and dam waters, the water quality is always considered as the 1st class in Melendiz stream, the 2nd class in Karasu stream and the 3rd class in Mamasin dam lake. Whereas, in terms of NO4-N values of both rivers and dam waters, the water quality is always considered as the 1st class in Melendiz stream, the 2nd-3rd class in Karasu stream. The total organic carbon (TOC) range for Karasu river is usually from 20 mg/L to 40 mg/L. The high value of organic matter in the Karasu stream can be explained by the availability of intensive green wetlands around this water resource. Finally, the Ministry of Forest and Water Authority give some suggestions for estimating protection zones of Melendiz stream and Mamasin basin's area, such as using the results of environmental tracers to investigate the agricultural contamination, including more sophisticated applications of multiple-tracer analyses to evaluate the travel time of contaminants and estimate the boundary of protection zones.展开更多
Nitrogen oxides (NO<sub>x</sub>) in urban air close to ground have significant health implications. Restrictions in traffic, mandatory use of catalytic converters on vehicles, and novel photocatalytic coat...Nitrogen oxides (NO<sub>x</sub>) in urban air close to ground have significant health implications. Restrictions in traffic, mandatory use of catalytic converters on vehicles, and novel photocatalytic coatings on surfaces contribute to reducing the level of NO<sub>x</sub> in cities. The aim of this study is to establish environmental profiles of NO<sub>x</sub> removal by a Three-Way Catalyst (TWC) car converter and by a photocatalytic surface coating (for asphalt and concrete pavements) for fostering technological development in reducing the levels of NO<sub>x</sub> in urban air. We assessed the environmental performance for the removal of 1 kg NO<sub>x</sub> by the two technologies with Life Cycle Assessment (LCA;EF.3 impact assessment method). In order to do so, we established Life-Cycle-Inventory (LCI) data representing production, operation and end-of-life of the two technologies based on data from literature and industry. The production of photocatalytic surface coatings, used on concrete and asphalt, has environmental loads two orders of magnitude lower than the environmental benefits of NO<sub>x</sub> reduction expressed as a reduction in Photochemical Ozone Formation (POF), Acidification (A), and Terrestrial Eutrophication (TE). The vehicle catalytic converter shows similar results except that the use of rare earth elements in the production constitutes a significant load to Freshwater Ecotoxicity (FET) and that additional use of fuel during operation induces a modest Climate Change (CC) impact. For both technologies, the environmental benefits of reducing NO<sub>x</sub> far exceed any adverse environmental aspects of the production of the technologies.展开更多
The waters renewal of the fishery harbor of Nea Krini is presented here. The harbor is located at the east Thessaloniki Gulf (NE Thermaikos Gulf, Greece). The main research point is focused on the environmental state ...The waters renewal of the fishery harbor of Nea Krini is presented here. The harbor is located at the east Thessaloniki Gulf (NE Thermaikos Gulf, Greece). The main research point is focused on the environmental state of the harbor which is under construction. Under that point of view, the description of a two-dimensional, depth average, hydrodynamic model follows, in order to simulate the wind generated circulation of waters, initially on the greater area of Thermaikos Gulf and then on the coastal basin of the fishing harbor. The renewal of waters in the harbor’s basin is subsequently studied. Tidal effects on the waters’ renewal are also studied. The calculation of the concentration of Biochemically Oxygen Demand (BOD) in the fishing harbor for the average time of waters’ renewal is then examined for three different cases, concerning the existence and operation of openings on the body of the groins. Finally, the analysis of the results shows a good environmental state of the harbor. It is obvious that the use of numerical models for different scenarios of engineering and design approaches can lead to the prognosis of hydrodynamic and environmental sate of a harbor’s basin so that the best possible technical design can be adopted.展开更多
The contribution of the use of RE(Renewable Energy)sources in general and wind source in particular in the Albanian electricity sector is very important to strengthen national energy security,diversify energy sources ...The contribution of the use of RE(Renewable Energy)sources in general and wind source in particular in the Albanian electricity sector is very important to strengthen national energy security,diversify energy sources and reduce dependence on imports.It also directly affects economic growth,employment and reduces the release of pollutants into the atmosphere,which are contributing to global warming and the greenhouse effect.The purpose of this paper is to assess the theoretical,technical and economic potential of the wind source in the Synej Area,Kavaja Municipality for electricity production in the absence of field measurements.Calculations of all technical,economic and environmental parameters are performed through the RETScreen Expert program.This analysis is sufficient for pre-implementation studies that do not require very detailed calculations and at the same time facilitates decision-making on project implementation.The study area has considerable technical potential for the use of wind energy.In this area,the analyzed project envisages the installation of 7 turbines of the Vesta 110 type,each with a power of 2 MW.The height of the turbines is 85 m.The total amount of electricity produced by this plant is estimated at 24 GWh/year,at a cost of 0.06€/kWh.The total emission reduction for all proposed projects is 477,500 tCO_(2) per year.The project has a positive net present value and a benefit-cost ratio greater than 1.The payback time is 8 years.展开更多
In the United Republic of Tanzania (URT), all environmental issues related to the mining industry are regulated according to two principle Acts: The Mining Act and the Environmental Management Act, and their respectiv...In the United Republic of Tanzania (URT), all environmental issues related to the mining industry are regulated according to two principle Acts: The Mining Act and the Environmental Management Act, and their respective regulations. The current acts were enacted in 2010 and 2004 respectively. Mineral exploration (that includes all on-site activities performed before a mining project is declared feasible) projects in URT appears to be “unforgotten phenomena” in the two major legislative documents, when it comes to environmental considerations. This phenomenon is believed to be causing detrimental effects to the environment. This paper, therefore, analyzes the current environmental regulatory framework on mineral exploration projects in URT and discusses few examples in which mineral exploration projects have caused damage to the indigenous environment. Furthermore, this study reviews environmental regulatory frameworks from other few countries in comparison with existing environmental regulatory framework prevailing in URT.展开更多
基金Florida Polytechnic University,Lakeland,USA for providing support。
文摘Need for Alzheimer's disease progression monitoring:Alzheimer's disease(AD)is an irreversible progressive brain disorder that causes severe and incurable neuro-impairment.The World Health Organization estimates that 55 million people are affected by AD dementia by 2020 which may exceed 78 million by 2030 and 139 in 2050.The estimated cost to manage AD is above US$1.3 trillion,which will further increase to US$2.8 trillion by 2030.
基金support in the form of a research grant by Badan Pengelola Dana Perkebunan Kelapa Sawit(BPDPKS)with grant number(PRJ-374/DPKS/2022,PRJ-17/DPKS/2023Lembaga Penelitian dan Pengabdian Masyarakat(LPPM-USK)with grand number 192/UN11.2.1/PT.01.03/PNBP/2023).
文摘Analyses of the characteristics and properties of biocoke fuel from several biomass wastes were carried out to determine the energy potential of the fuel.Biocoke production in this research uses heating and pressure methods simultaneously under constant conditions.Experimental results using thermogravimetric analysis show that biocoke empty-fruit-bunches(EFB)have a higher energy potential of 26.57 MJ/kg.Meanwhile,mangrove biocoke recorded the lowest ash content at 1.81%compared to EFB at 5.09%.The carbon content of mangrove biocoke is 58.02%,slightly higher than that of EFB,56.70%,but EFB is higher than that of other biomass.Overall,the energy content recorded in biocoke increased significantly compared to raw biomass.
文摘This review describes the mechanisms of natural coagulants.It provides a good understanding of the two key processes of coagulation-flocculation:adsorption and charge neutralization,as well as adsorption and bridging.Various factors have influence the coagulation/flocculation process,including the effect of pH,coagulant dosage,coagulant type,temperature,initial turbidity,coagulation speed,flocculation speed,coagulation and flocculation time,settling time,colloidal particles,zeta potential,the effects of humic acids,and extraction density are explained.The bio-coagulants derived from plants are outlined.The impact of organic coagulants on water quality,focusing on their effects on the physicochemical parameters of water,heavy metals removal,and bacteriological water quality,is examined.The methods of extraction and purification of plant-based coagulants,highlighting techniques such as solvent extraction and ultrasonic extraction,are discussed.It also examines the parameters that influence these processes.The methods and principles of purification of coagulating agents,including dialysis,freeze-drying,ion exchange,electrophoresis,filtration,and centrifugation,are listed.Finally,it evaluates the sustainability of natural coagulants,focusing on the environmental,technical,and economic aspects of their use.At the end of this review,the readers should have a comprehensive understanding of the mechanisms,selection,extraction,purification,and sustainability of plant-based natural coagulants in water treatment.
文摘Objective:To investigate the distribution pattern of animal bites in Mirjaveh,Iran from 2015 to 2020.Methods:The data on animal bites were collected from the Department of Infectious Diseases,the provincial health center.Monthly climatic data on precipitation and temperature during the study period were also collected.The correlation between incidence and temperature,precipitation rate,land type,and altitude was also analyzed.Results:The results showed that men were more affected by animal bites than women(76.4%,P<0.001),and the highest incidence rate occurred in the age group of 5-19 years.The incidence rate of animal bites was found to be correlated with temperature and altitude.An increase in temperature was associated with a rise in the incidence rate of animal bites.The number of animal bites increased until 2019,possibly due to an increase in the number of dogs in the area.Conclusions:Targeted interventions should be implemented to reduce the incidence of animal bites,particularly among children,housewives,and students.Improving access to appropriate treatments,increasing public awareness of the hazards of animal bites,and increasing the number of vaccinated dogs in the area are essential strategies to be considered.
基金funded by the Minister of Education,Culture,Research,and Technology of Indonesia through a research scheme of“Penelitian Fundamental–Reguler(PFR)2023”under a contract number of 1115c/IT9.2.1/PT.01.03/2023.
文摘This work presents the development of hierarchical niobium pentoxide(Nb_(2)O_(5))-based composite nanofiber membranes for integrated adsorption and photocatalytic degradation of methylene blue(MB)pollutants from aqueous solutions.The Nb_(2)O_(5) nanorods were vertically grown using a hydrothermal process on a base electrospun nanofibrous membrane made of polyacrylonitrile/polyvinylidene fluoride/ammonium niobate(V)oxalate hydrate(Nb_(2)O_(5)@PAN/PVDF/ANO).They were characterized using field-emission scanning electron microscopy(FE-SEM),X-ray diffraction(XRD)analysis,and Fourier transform infrared(FTIR)spectroscopy.These composite nanofibers possessed a narrow optical bandgap energy of 3.31 eV and demonstrated an MB degradation efficiency of 96%after 480 min contact time.The pseudo-first-order kinetic study was also conducted,in which Nb_(2)O_(5)@PAN/PVDF/ANO nanofibers have kinetic constant values of 1.29×10^(-2) min^(-1) and 0.30×10^(-2) min^(-1) for adsorption and photocatalytic degradation of MB aqueous solutions,respectively.These values are 17.7 and 7.8 times greater than those of PAN/PVDF/ANO nanofibers without Nb_(2)O_(5) nanostructures.Besides their outstanding photocatalytic performance,the developed membrane materials exhibit advantageous characteristics in recycling,which subsequently widen their practical use in environmental remediation applications.
文摘This present research work focuses on the valorization of pig droppings for production of biogas in mono digestion and co-digestion with proportions of cow dung from the urban commune of N’Zérékoré. It was carried out in December 2020 in the Physics laboratory of the University of N’Zérékoré. The anaerobic digestion process took 25 days in an almost constant ambient temperature of 25˚C. Five digesters were loaded on 12/06/2020, two of which with 1 kg of pig dung and 1 kg of cow dung both in mono-digestion. The 3 other digesters in co-digestion with different proportions of pig manure and cow dung. The substrate in each digester is diluted in 2 liters of water, with a proportion of (1/2). The main results obtained are: 1) the evolution of the temperature and pH during digestion process, 2) the average biogas productions 0.61 liters for (D1);1.20 liter for (D2);1.65 liter for (D3);1.51 liter for (D4) and 1.31 liter for (D5). The cumulative amounts of biogas are respectively: D1 (7.95 liters), D2 (15.60 liters), D3 (21.50 liters), D4 (19.65 liters) and D5 (17.05 liters). The total cumulative production is 81.75 liters at the end of the process. The originality of this research work is that the proposed model examines the relation between the daily biogas production and the variation of temperature, pH and pressure. The combustibility test showed the biogas produced during the first week was no combustible (contains less than 50% methane). Combustion started from the biogas produced from the 15th day and it is from the 20th day that a significant amount of stable yellow/blue flame was observed. The results of this study show the combination of pig manure and cow dung presents advantages for optimal biogas production.
文摘While hydropower is generally considered a clean energy source, it is important to recognize that their waste can still contribute to greenhouse gas emissions (GHG). The purpose of this study is to assess the carbon footprint associated with the waste sector throughout the operational phase of the Nam Theun 2 hydropower plant in Laos. Understanding the environmental impact of the waste sector is crucial for ensuring the plant’s sustainability. This study utilizes the theoretical estimation method recommended in the 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories, as well as the Requirements for Specification with guidance at the organization level for quantification and reporting of GHG emissions and removals. We emphasize the significance of implementing sustainable waste management practices to reduce GHG emissions and minimize the environmental impact of hydropower operations. By conducting a comprehensive analysis, this paper also provides insights into the environmental implications of waste management in hydropower plants and identifies strategies to mitigate the carbon footprint in the waste sector. The findings contribute to a better understanding of the environmental sustainability of hydropower plants and provide valuable guidance for policymakers, energy producers, and environmental practitioners involved in hydropower plant design and operation.
文摘Evaluation of assessment of the metal processes governing the metals distribution in soil and dust samples is very significant and protects the health of human and ecological system. Recently, special attention has given to the assessment of metals pollution impact on soil and dust within industrial areas. This study aims to assess the metal contamination levels in the topsoil and street dust around the cement factory in Qadissiya area, southern Jordan. The levels of seven metals (namely Fe, Zn, Cu, Pb, Cr, Cd, and Mn) were analyzed using Flame Atomic Absorption Spec-trophotometer (FAAS) to monitor, evaluate, and to compare topsoil and road dust pollution values of metals of the different types of urban area. The physicochemical parameters which believed to affect the mobility of metals in the soil of the study area were determined such as pH, EC, TOM, CaCO3 and CEC. The levels of metal in soil samples are greater on the surface but decrease in the lower part as a result of the basic nature of soil. The mean values of the metals in soil can be arranged in the following order: Zn > Pb > Mn > Fe > Cu > Cr > Cd. The relatively high concentration of metals in the soil sample was attributed to anthropogenic activities such as traffic emissions, cement factory and agricultural activities. Correlation coefficient analysis and the spatial distribution of indices and the results of statistical analysis indicate three groups of metals: Fe and Mn result by natural origin, Zn, Pb, Cu and Zn result by anthropogenic origin (mainly motor vehicle traffic and abrasion of tires) while Cd is mixed origin. The higher content level values of metals of anthropogenic source in soil samples indicate that it is a source of contamination of air in the studied area. .
文摘Bacterial populations isolated from treated soil,artificially contaminated with lead(Pb)and cadmium(Cd)and undergoing a phytoremediation process were studied to determine their potential application in soil remediation.The physicochemical parameters evaluated in the soil varied significantly.Ten bacterial strains were selected from each polluted soil to test tolerance and growth in contaminated media.The concentrations of heavy metals tested were 1,000 ppm for lead and 850 ppm for cadmium.These strains were morphologically identified through Gram staining.Four strains showing the most significant growth in both contaminants were then selected to verify their tolerance to different concentrations of heavy metals.The results demonstrated that the selected bacteria have high tolerance to Pb,resisting inhibition up to 2,000 ppm.In contrast,strains exposed to cadmium tended to slow their growth as the concentration increased.
文摘In the past decades, two large scale coastal engineering projects have been carried out in the Deep Bay surrounded by Shenzhen City and Hong Kong Special Administrative Region. One project is Shenzhen River channel regulation and the other is the sea reclamation along the seashore on the Shenzhen side. The two projects are very close to the two national nature reserves, specifically Futian in Shenzhen and Mai Po in Hong Kong, which are important wetland ecosystems worldwide. This paper aims to identify and monitor the mangrove wetland changes with time series of Landsat Thematic Mapper images pre and post to the two engineering projects being launched. Coupled analysis of the image interpretation results and tidal data acquired at the same time in the context of the two works reveals that the mangrove wetland area has increased from year 1989 to 1994, and has changed little from year 1994 to 2002. Binary coding is applied to reveal the distribution image of mangrove at each phase, and the coding image shows that the construction of the two coastal engineering projects has caused frequent changes in mangrove spatial distribution. The study also shows that the change is not significant regarding to the precision of the method and the natural evolution of mangrove wetland, and the projects do not cause apparently influences upon the two national mangrove conservation zones at least for the research time period.
文摘Due to high demand and limited availability of rare earth elements (REEs), Europe is unable to meet its industrial needs, especially High Tech needs, today for the manufacturing sector. Therefore, the EU has included them in the group of 14 critical minerals. China currently controls completely the mining activity, the enrichment technologies and metallurgy, and end-metal products of rare earths, resulting both Europe and the U.S.A. in full industrial dependency. The exploitation and wide use of REEs in fertilizers have led to accumulation of these elements in soils, resulting in an agriculture field pollution, which affects directly the soil microfauna with a toxic potential effect.
基金supports provided by the Science Research and Technology Developing Program, CNPC (2008D-4704-2): "Microbial remediation technology of high-temperature and arid oil polluted soil"
文摘A hydrocarbon degrading bacterium KL2-13 was isolated from ten sites of oil contaminated soil in the Karamay oilfield. It was identified as the Bacillusfusiformis sp. bacterium based on its morphological and physiological characteristics and the 16S rDNA sequence analysis. The factors influencing the hydrocarbon degradation by the bacterium KL2-13 were determined. The test results have showed that the hydrocarbon degrading bacterium KL2-13 requires an optimum pH range of 6-8, and the optimum inoculation quantity is 3%. The low-concentration metal ions Fe^2+, Mg^2+ and Ca^2+can improve the degradation ability of the bacteria KL2-13. A too low concentration of Tween-80 does not show obvious promotion to the degrading bacterium KL2-13, and an excessively high concentration can decrease the degradation ability of the bacterium, the best dosage of which is 2%. The hydrocarbon degrading rate reached 59.07%4-0.37% under the optimum culture conditions.
文摘Novel graphitic carbon nitride(g-C_(3)N_(4))nanosheet/Bi_(5)O_(7)Br/NH_(2)-MIL-88B(Fe)photocatalysts(denoted as GCN-NSh/Bi_(5)O_(7)Br/FeMOF,in which MOF is metal–organic framework)with double S-scheme heterojunctions were synthesized by a facile solvothermal route.The resultant materials were examined by X-ray photoelectron spectrometer(XPS),X-ray diffraction(XRD),scanning electron microscopy(SEM),energy dispersive X-ray spectroscopy(EDX),transmission electron microscopy(TEM),high-resolution transmission electron microscopy(HRTEM),photoluminescence spectroscopy(PL),Fourier transform infrared spectroscopy(FT-IR),UV-Vis diffuse reflection spectroscopy(UV-vis DRS),photocurrent density,electrochemical impedance spectroscopy(EIS),and Brunauer–Emmett–Teller(BET)analyses.After the integration of Fe-MOF with GCN-NSh/Bi_(5)O_(7)Br,the removal constant of tetracycline over the optimal GCN-NSh/Bi_(5)O_(7)Br/Fe-MOF(15wt%)nanocomposite was promoted 33 times compared with that of the pristine GCN.The GCN-NSh/Bi_(5)O_(7)Br/Fe-MOF(15wt%)nanocomposite showed superior photoactivity to azithromycin,metronidazole,and cephalexin removal that was 36.4,20.2,and 14.6 times higher than that of pure GCN,respectively.Radical quenching tests showed that·O_(2)-and h+mainly contributed to the elimination reaction.In addition,the nanocomposite maintained excellent activity after 4 successive cycles.Based on the developed n–n heterojunctions among n-GCN-NSh,n-Bi_(5)O_(7)Br,and n-Fe-MOF semiconductors,the double S-scheme charge transfer mechanism was proposed for the destruction of the selected antibiotics.
文摘Ti3 AL-Nb-Mo composites were prepared by SHS using initial powder mixtures of Ti-Al-Nb-Mo and their corrosion and mechanical properties were studied to develop bioand environmental materials. The composites reached 99.8% of theoretical density after the direct consolidation. The composites shows equiaxed primary a2 in a matrix of fine secondary a2 plates and ordered 82 (Bo) forming a basket weave structure. The strain rate sensitivity (m = dlnσ/dlne) at 2% strain is 0.008. Corrosion potential and corrosion rate of the composites formed by SHS were -151. 5m VSHE and 5. 72× 10^(-8)A/cm2 for Ti3 Al-10Nb-1. 5Mo and - 138.4m VSHE and 4. 12×10^(-8)cm2 for Ti3 Al-12Nb-1.5Mo in a 50% NaOH-10%FeCI3 solution, respectively. Corrosion resistance decreased with niobium content in the composites and chloride content in the aqueous solution. Selective corrosion of a2 phase in a matrix occurred in the corrosion environment which suggests that the corrosion potential and rate changes are related to the niobium content and Q2 phase in a matrix.
文摘The increased use of scarce metals in combination with climate changes pave way for extensive extraction of mineral resources in Greenland. The focus of this study is on environmental ethical aspects of mining activities in a vulnerable and unspoiled arctic nature. Mining can have several economic and social benefits for Greenland. On the other hand, the environmental impacts from mining are well known. Through DPSIR (Drivers, Pressures, States, Impacts, Responses) and Stakeholder analysis, we assess how future mining in Greenland can be sustainably implemented. The analysis revealed that numerous stakeholders have to be taken into consideration with a wide range of different interests. The DPSIR analysis clarified the availability of various potential political responses that could affect the drivers, pressures, states and impacts of mining mainly focused on implementation of effective environmental regulation strategies. Our findings revealed different environmental ethical dilemmas of which the most critical is how Greenland can open up for mining, gain economical revenue while averting destruction of unspoiled regions and aesthetic impairment. We recommend strict environmental legislation involving use of the "polluter pay principle", continuous monitoring of pollution and establishment of an industry-funded catastrophe trust fund. These initiatives can ensure economic benefits while environmental impacts remain negligible.
文摘The main purpose of this study was to determine the changes in the water quality of Melendiz and Karasu streams, which recharge the Mamasin dam, and to evaluate its environmental impacts on the dam site that provides drinking water and irrigation demand in Aksaray city in the Central Anatolia of Turkey. The field researches were focused on estimating the main sources of contamination, determining and evaluating the changes in the water quality due to the direct wastewater discharges into the Melendiz and Karasu rivers, which recharge the Mamasin dam sites. During the study, water samples were collected from Melendiz and Karasu stream and Mamasin dam, and then, the physical and chemical analyses of water samples were conducted. The relevant in-situ and laboratory analyses were carried out during the dry and wet seasons. The results of the analyses showed that in term of the surface water quality criteria in terms of NO3-N value of both rivers and dam waters, the water quality is always considered as the 1st class in Melendiz stream, the 2nd class in Karasu stream and the 3rd class in Mamasin dam lake. Whereas, in terms of NO4-N values of both rivers and dam waters, the water quality is always considered as the 1st class in Melendiz stream, the 2nd-3rd class in Karasu stream. The total organic carbon (TOC) range for Karasu river is usually from 20 mg/L to 40 mg/L. The high value of organic matter in the Karasu stream can be explained by the availability of intensive green wetlands around this water resource. Finally, the Ministry of Forest and Water Authority give some suggestions for estimating protection zones of Melendiz stream and Mamasin basin's area, such as using the results of environmental tracers to investigate the agricultural contamination, including more sophisticated applications of multiple-tracer analyses to evaluate the travel time of contaminants and estimate the boundary of protection zones.
文摘Nitrogen oxides (NO<sub>x</sub>) in urban air close to ground have significant health implications. Restrictions in traffic, mandatory use of catalytic converters on vehicles, and novel photocatalytic coatings on surfaces contribute to reducing the level of NO<sub>x</sub> in cities. The aim of this study is to establish environmental profiles of NO<sub>x</sub> removal by a Three-Way Catalyst (TWC) car converter and by a photocatalytic surface coating (for asphalt and concrete pavements) for fostering technological development in reducing the levels of NO<sub>x</sub> in urban air. We assessed the environmental performance for the removal of 1 kg NO<sub>x</sub> by the two technologies with Life Cycle Assessment (LCA;EF.3 impact assessment method). In order to do so, we established Life-Cycle-Inventory (LCI) data representing production, operation and end-of-life of the two technologies based on data from literature and industry. The production of photocatalytic surface coatings, used on concrete and asphalt, has environmental loads two orders of magnitude lower than the environmental benefits of NO<sub>x</sub> reduction expressed as a reduction in Photochemical Ozone Formation (POF), Acidification (A), and Terrestrial Eutrophication (TE). The vehicle catalytic converter shows similar results except that the use of rare earth elements in the production constitutes a significant load to Freshwater Ecotoxicity (FET) and that additional use of fuel during operation induces a modest Climate Change (CC) impact. For both technologies, the environmental benefits of reducing NO<sub>x</sub> far exceed any adverse environmental aspects of the production of the technologies.
文摘The waters renewal of the fishery harbor of Nea Krini is presented here. The harbor is located at the east Thessaloniki Gulf (NE Thermaikos Gulf, Greece). The main research point is focused on the environmental state of the harbor which is under construction. Under that point of view, the description of a two-dimensional, depth average, hydrodynamic model follows, in order to simulate the wind generated circulation of waters, initially on the greater area of Thermaikos Gulf and then on the coastal basin of the fishing harbor. The renewal of waters in the harbor’s basin is subsequently studied. Tidal effects on the waters’ renewal are also studied. The calculation of the concentration of Biochemically Oxygen Demand (BOD) in the fishing harbor for the average time of waters’ renewal is then examined for three different cases, concerning the existence and operation of openings on the body of the groins. Finally, the analysis of the results shows a good environmental state of the harbor. It is obvious that the use of numerical models for different scenarios of engineering and design approaches can lead to the prognosis of hydrodynamic and environmental sate of a harbor’s basin so that the best possible technical design can be adopted.
文摘The contribution of the use of RE(Renewable Energy)sources in general and wind source in particular in the Albanian electricity sector is very important to strengthen national energy security,diversify energy sources and reduce dependence on imports.It also directly affects economic growth,employment and reduces the release of pollutants into the atmosphere,which are contributing to global warming and the greenhouse effect.The purpose of this paper is to assess the theoretical,technical and economic potential of the wind source in the Synej Area,Kavaja Municipality for electricity production in the absence of field measurements.Calculations of all technical,economic and environmental parameters are performed through the RETScreen Expert program.This analysis is sufficient for pre-implementation studies that do not require very detailed calculations and at the same time facilitates decision-making on project implementation.The study area has considerable technical potential for the use of wind energy.In this area,the analyzed project envisages the installation of 7 turbines of the Vesta 110 type,each with a power of 2 MW.The height of the turbines is 85 m.The total amount of electricity produced by this plant is estimated at 24 GWh/year,at a cost of 0.06€/kWh.The total emission reduction for all proposed projects is 477,500 tCO_(2) per year.The project has a positive net present value and a benefit-cost ratio greater than 1.The payback time is 8 years.
文摘In the United Republic of Tanzania (URT), all environmental issues related to the mining industry are regulated according to two principle Acts: The Mining Act and the Environmental Management Act, and their respective regulations. The current acts were enacted in 2010 and 2004 respectively. Mineral exploration (that includes all on-site activities performed before a mining project is declared feasible) projects in URT appears to be “unforgotten phenomena” in the two major legislative documents, when it comes to environmental considerations. This phenomenon is believed to be causing detrimental effects to the environment. This paper, therefore, analyzes the current environmental regulatory framework on mineral exploration projects in URT and discusses few examples in which mineral exploration projects have caused damage to the indigenous environment. Furthermore, this study reviews environmental regulatory frameworks from other few countries in comparison with existing environmental regulatory framework prevailing in URT.