The ever-increasing complexity of environmental pollutants urgently warrants the development of new detection technologies.Sensors based on the optical properties of hydrogels enabling fast and easy in situ detection ...The ever-increasing complexity of environmental pollutants urgently warrants the development of new detection technologies.Sensors based on the optical properties of hydrogels enabling fast and easy in situ detection are attracting increasing attention.In this paper,the data from 138 papers about different optical hydrogels(OHs)are extracted for statistical analysis.The detection performance and potential of various types of OHs in different environmental pollutant detection scenarios were evaluated and compared to those obtained using the standard detection method.Based on this analysis,the target recognition and sensing mechanisms of two main types of OHs are reviewed and discussed:photonic crystal hydrogels(PCHs)and fluorescent hydrogels(FHs).For PCHs,the environmental stimulus response,target receptors,inverse opal structures,and molecular imprinting techniques related to PCHs are reviewed and summarized.Furthermore,the different types of fluorophores(i.e.,compound probes,biomacromolecules,quantum dots,and luminescent microbes)of FHs are discussed.Finally,the potential academic research directions to address the challenges of applying and developing OHs in environmental sensing are proposed,including the fusion of various OHs,introduction of the latest technologies in various fields to the construction of OHs,and development of multifunctional sensor arrays.展开更多
Extracellular polymeric substances (EPS) are the predominant constituents of activated sludge and represent up to 80% of the mass of activated sludge. They play a crucial role in the flocculation, settling and dewat...Extracellular polymeric substances (EPS) are the predominant constituents of activated sludge and represent up to 80% of the mass of activated sludge. They play a crucial role in the flocculation, settling and dewatering of activated sludge. Furthermore, EPS also show great efficiency in binding heavy metals. So EPS are key factors influencing reduction in sludge volume and mass, as well as activity and utilization of sludge. EPS are of considerable environmental interest and hundreds of articles on EPS have been published abroad, while information on EPS in China is limited. In this paper, results of over 60 publications related to constituents and characteristics of EPS and their influences on flocculation, settling and dewatering of sludge are compiled and analyzed. Metal-binding ability of EPS is also discussed, together with a brief consideration of possible research interests in the future.展开更多
Pedogenic carbonates, found extensively in arid and semiarid regions, are important in revealing regional climatic and environmental changes as well as the carbon cycle. In addition, stable carbon and oxygen isotopic ...Pedogenic carbonates, found extensively in arid and semiarid regions, are important in revealing regional climatic and environmental changes as well as the carbon cycle. In addition, stable carbon and oxygen isotopic compositions of pedogenic carbonates have been used to rebuild paleoecology (biomass and vegetation) and to estimate paleotemperature and paleoprecipitation during past geological time. By utilizing the stable carbon and oxygen isotopic compositions (δ13C and (δ18O) of secondary nodules in Ustic Vertisols, this study looked into the climatic and environmental changes in the dry valleys of the Yuanmou Basin, Yunnan Province, in southwestern China. The results showed that during the early Holocene, a warm-humid or hot-humid climate existed in the Yuanmou Basin, but since then fluctuations in climate have occurred, with a dry climate prevailing. A highly significant correlation (r = 0.92, n = 9) between δ13C and δ18O values of carbonates illustrated that there had been a continual shifting between cold-humid and warm-dry climates in southwestern China including the Yuanmou Basin since the early Holocene.展开更多
The Swan Lake Inlet, the State Primary Wildlife Protection Area, is a lagoon\|inlet system located in the Rongcheng Bay, Shandong Peninsula, China. It has been undergoing development for aquaculture and tourism. In th...The Swan Lake Inlet, the State Primary Wildlife Protection Area, is a lagoon\|inlet system located in the Rongcheng Bay, Shandong Peninsula, China. It has been undergoing development for aquaculture and tourism. In the summer of 1999, a study on the environment of the Swan Lake Inlet was carried out. The concentrations of the major elements and trace elements Fe, Al, Pb, Zn, Cd, Cu, Cr, Mn and P have been measured by ICP\|AES and graphite furnace atomic adsorption spectrometry. The sources and distribution of the elements in the Swan Lake Inlet have been discussed. It is concluded that the Swan Lake Inlet has not been subjected to significant environmental pollution.\; The chemical results show that the dissolved oxygen (DO) contents are generally normal. At some locations DO solubility appears to be >100%. The BOD\-5 (five\|day biochemical oxygen demand) values are generally <4 mg/L and COD (chemical oxygen demand) 3~4 mg/L. The seawater N, P and Si contents are lower than the Class I water type specified by the Chinese National Standard of Water Quality. The low nutrient distribution reflects little discharge from land, therefore lacking of nutrient supply.展开更多
The metamorphic belt in central Jiangxi, located in the compound terrain within the Cathaysia, Yangtze Block and Caledonian fold zone of South China, is composed dominantly of meta-argillo-arenaceous rocks, with minor...The metamorphic belt in central Jiangxi, located in the compound terrain within the Cathaysia, Yangtze Block and Caledonian fold zone of South China, is composed dominantly of meta-argillo-arenaceous rocks, with minor amphibolite. These rocks underwent amphibolite-facies metamorphism. The meta-argillo-arenaceous rocks show large variations in major element composition, but have similar REE patterns and trace element composition, incompatible element and LIE enrichments [high Th/Sc ({0.57}-{3.59}), La/Sc ({1.46}-{12.4}), La/Yb ({5.84}-{19.0})] and variable Th/U ratios, with ΣREE=129-296μg/g, δEu={0.51}-{0.86}, and (La/Yb)-N={3.95}-{12.9}. The Nd isotopic model ages t-{DM} of these rocks vary from 1597 to 2124 Ma. Their {}+{143}Nd/+{144}Nd values are low [ε-{Nd}(0)={-11.4} to {-15.8}]. Some conclusions have been drawn as follows: (1) The metamorphic rocks in central Jiangxi Province are likely formed in a tectonic environment at the passive continental margin of the Cathaysia massif. (2) The metamorphosed argillo-arenaceous rocks are composed dominantly of upper crustal-source rocks (Al- and K|rich granitic or/and sedimentary rocks of Early Proterozoic), which experienced good sorting, slow deposition and more intense chemical weathering. (3) According to the whole-rock Sm-Nd isochron ages (1113±49 to 1199±26 Ma) of plagioclase-amphibole (schist) and Nd isotopic model age t-{DM} (1597-2124 Ma) of meta-argillo-arenaceous rocks, the metamorphic belt in central Jiangxi Province was formed during the Middle Proterozoic (1100-1600 Ma).展开更多
The coronavirus disease 2019(COVID-19)pandemic is challenging the current public health emergency response systems(PHERSs)of many countries.Although environmental factors,such as those influencing the survival of viru...The coronavirus disease 2019(COVID-19)pandemic is challenging the current public health emergency response systems(PHERSs)of many countries.Although environmental factors,such as those influencing the survival of viruses and their transmission between species including humans,play important roles in PHERSs,little attention has been given to these factors.This study describes and elucidates the roles of environmental factors in future PHERSs.To improve countries’capability to respond to public health emergencies associated with viral infections such as the COVID-19 pandemic,a number of environmental factors should be considered before,during,and after the responses to such emergencies.More specifically,to prevent pandemic outbreaks,we should strengthen environmental and wildlife protection,conduct detailed viral surveillance in animals and hotspots,and improve early-warning systems.During the pandemic,we must study the impacts of environmental factors on viral behaviors,develop control measures to minimize secondary environmental risks,and conduct timely assessments of viral risks and secondary environmental effects with a view to reducing the impacts of the pandemic on human health and on ecosystems.After the pandemic,we should further strengthen surveillance for viruses and the prevention of viral spread,maintain control measures for minimizing secondary environmental risks,develop our capability to scientifically predict pandemics and resurgences,and prepare for the next unexpected resurgence.Meanwhile,we should restore the normal life and production of the public based on the“One Health”concept,that views global human and environmental health as inextricably linked.Our recommendations are essential for improving nations’capability to respond to global public health emergencies.展开更多
Summer and winter campaigns for the chemical compositions and sources of nonmethane hydrocarbons(NMHCs)and oxygenated volatile organic compounds(OVOCs)were conducted in Xi’an.Data from 57 photochemical assessment mon...Summer and winter campaigns for the chemical compositions and sources of nonmethane hydrocarbons(NMHCs)and oxygenated volatile organic compounds(OVOCs)were conducted in Xi’an.Data from 57 photochemical assessment monitoring stations for NMHCs and 20 OVOC species were analyzed.Significant seasonal differences were noted for total VOC(TVOC,NMHCs and OVOCs)concentrations and compositions.The campaign-average TVOC concentrations in winter(85.3±60.6 ppbv)were almost twice those in summer(47.2±31.6 ppbv).Alkanes and OVOCs were the most abundant category in winter and summer,respectively.NMHCs,but not OVOCs,had significantly higher levels on weekends than on weekdays.Total ozone formation potential was higher in summer than in winter(by 50%)because of the high concentrations of alkenes(particularly isoprene),high temperature,and high solar radiation levels in summer.The Hybrid Environmental Receptor Model(HERM)was used to conduct source apportionment for atmospheric TVOCs in winter and summer,with excellent accuracy.HERM demonstrated its suitability in a situation where only partial source profile data were available.The HERM results indicated significantly different seasonal source contributions to TVOCs in Xi’an.In particular,coal and biomass burning had contributions greater than half in winter(53.4%),whereas traffic sources were prevalent in summer(53.1%).This study’s results highlight the need for targeted and adjustable VOC control measures that account for seasonal differences in Xi’an;such measures should target not only the severe problem with VOC pollution but also the problem of consequent secondary pollution(e.g.,from ozone and secondary organic aerosols).展开更多
The study evaluated the sources and controlling factors of the groundwater contaminants in an agroeconomic region of Lower Ganga Basin using principal component analysis(PCA),multivariable linear regressions(MLR),corr...The study evaluated the sources and controlling factors of the groundwater contaminants in an agroeconomic region of Lower Ganga Basin using principal component analysis(PCA),multivariable linear regressions(MLR),correlation analysis,and hierarchical cluster analysis,and evaluated the public health risks using the Latin Hypercube Sampling,goodness-of-fit statistics,Monte Carlo simulation and Sobol sensitivity analysis based on the 1000 samples collected in two sampling cycles(N=1000).The study reveals that the dissolution of fluoride-bearing minerals and semi-arid climate regulate the fluoride concentrations(0.10–18.25 mg/L)in groundwater.Extensive application of inorganic nitrogenous fertilizers and livestock manure mainly contributed to elevated nitrate levels(up to 435.0 mg/L)in groundwater.The health risks analysis indicates that fluoride exposure is more prevalent in the residents of each age group than the nitrate and both contaminants exhibited higher non-carcinogenic health risks on the infant and child(minor)age groups compared to adolescents and adults.Based on the cokriging interpolation mapping,the minor residents of 17.88%–23.15%of the total area(4545.0 km^(2))are vulnerable to methemoglobinemia whereas the residents of all age-groups in 38.47%–44.45%of the total area are susceptible to mild to severe dental/skeletal fluorosis owing to consumption of untreated nitrate and fluoride enriched groundwater.The Sobol sensitivity indices revealed contaminant levels,groundwater intake rate and their collective effects are the most influential factors to pose potential health risks on the residents.Artificial recharge and rainwater harvesting practices should be adopted to improve the groundwater quality and the residents are advised to drink purified groundwater.展开更多
Modern logistics is a new industry during the construction of national economy. Based on analyzing the environmental problem that was led by the limitation of the strategy during enacting the program of the modern log...Modern logistics is a new industry during the construction of national economy. Based on analyzing the environmental problem that was led by the limitation of the strategy during enacting the program of the modern logistics, SEA for modern logistics was implemented. In this paper, procedure and indicator system in the SEA are constructed, and Environmental Check List to identify environmental impact factors of SEA for modern logistics is established. And a conception that indicates friendly degree of logistics system with resources and environment, degree of green, is introduced. With the example of modern logistics program of Dalian in China, two methods are applied, AHP and Fuzzy Comprehensive Evaluation Method, in the implement of SEA for modern logistics development. It is concluded that degree of green of modern logistics in Dalian is high. However, several important factors should be paid much attention to in the SEA for modern logistics as well as in the formulation and implement of modern logistics in Dalian.展开更多
Cyanobacteria can accumulate as a heavy biomass on the leeward side of large eutrophic lakes,posing a potential threat to public health.The mitigating capacity of three flocculants and their potential impacts on the m...Cyanobacteria can accumulate as a heavy biomass on the leeward side of large eutrophic lakes,posing a potential threat to public health.The mitigating capacity of three flocculants and their potential impacts on the major environmental features of water and sediments was evaluated.Results indicate that polyaluminum chloride(PAC)and ferric chloride(FeCl)are efficient flocculants that can rapidly mitigate cyanobacterial blooms with chlorophyll-a concentrations higher tnan 1500 ug/L within 15 min.In comparison,cationic starch with chitosan could only treat cyanobacterial blooms in chlorophyll-a concentrations of less than 200μg/L.The addition of FeClcaused a decline in the pH value,while dissolved oxygen in the water column dropped to 2 mg/L during cationic starch with chitosan treatment for a high cyanobacterial biomass group.Thus,a combination of flocculants and oxygenators should be considered when treating high-concentration cyanobacterial blooms for emergency purposes.Additionally,the cell lysis of cyanobacteria caused by cationic starch with chitosan can result in an increase in total dissolved phosphorus and total dissolved nitrogen.Furthermore,the high accumlation of nutrients in sediments after the settling of cyanobacteria can cause high internal phosphorus pollution.The increase in the total organic carbon of the sediments can threaten lake restoration achieved by planting submerged macrophytes.展开更多
In this study, salting-out assisted liquid-liquid extraction combined with high performance liquid chromatography diode array detector (SALLE-HPLC-DAD) method was developed and validated for simultaneous analysis of c...In this study, salting-out assisted liquid-liquid extraction combined with high performance liquid chromatography diode array detector (SALLE-HPLC-DAD) method was developed and validated for simultaneous analysis of carbaryl, atrazine, propazine, chlorothalonil, dimethametryn and terbutryn in environmental water samples. Parameters affecting the extraction efficiency such as type and volume of extraction solvent, sample volume, salt type and amount, centrifugation speed and time, and sample pH were optimized. Under the optimum extraction conditions the method was linear over the range of 10 - 100 μg/L (carbaryl), 8 - 100 μg/L (atarzine), 7 - 100 μg/L (propazine) and 9 - 100 μg/L (chlorothalonil, terbutryn and dimethametryn) with correlation coefficients (R2) between 0.99 and 0.999. Limits of detection and quantification ranged from 2.0 to 2.8 μg/L and 6.7 to 9.5 μg/L, respectively. The extraction recoveries obtained for ground, lake and river waters were in a range of 75.5% to 106.6%, with the intra-day and inter-day relative standard deviation lower than 3.4% for all the target analytes. All of the target analytes were not detected in these samples. Therefore, the proposed SALLE-HPLC-DAD method is simple, rapid, cheap and environmentally friendly for the determination of the aforementioned herbicides, insecticide and fungicide residues in environmental water samples.展开更多
The coronavirus disease 2019(COVID-19)pandemic,caused by the novel virus severe acute respiratory syndrome coronavirus 2(SARS-CoV-2),began in December 2019 in China and has led to a global public health emergency.Prev...The coronavirus disease 2019(COVID-19)pandemic,caused by the novel virus severe acute respiratory syndrome coronavirus 2(SARS-CoV-2),began in December 2019 in China and has led to a global public health emergency.Previously,it was known as 2019-nCoV and caused disease mainly through respiratory pathways.The COVID-19 outbreak is ranked third globally as the most highly pathogenic disease of the twenty-first century,after the outbreak of SARS-CoV and Middle East respiratory syndrome in 2002 and 2012,respectively.Clinical,laboratory,and diagnostic methodology have been demonstrated in some observational studies.No systematic reviews on COVID-19 have been published regarding the integration of COVID-19 outbreaks(monitoring,fate and treatment)with environmental and human health perspectives.Accordingly,this review systematically addresses environmental aspects of COVID-19 outbreak such as the origin of SARS-CoV-2,epidemiological characteristics,diagnostic methodology,treatment options and technological advancement for the prevention of COVID-19 outbreaks.Finally,we integrate COVID-19 outbreaks(monitoring,fate and treatment)with environmental and human health perspectives.We believe that this review will help to understand the SARS-CoV-2 outbreak as a multipurpose document,not only for the scientific community but also for global citizens.Countries should adopt emergency preparedness such as prepare human resources,infrastructure and facilities to treat severe COVID-19 as the virus spreads rapidly globally.展开更多
The present paper deals with the behavior of the Attached Microbial Community (AMC) for water self-purification at different riverbeds in a typical local river. The study quantitatively investigated the problem starti...The present paper deals with the behavior of the Attached Microbial Community (AMC) for water self-purification at different riverbeds in a typical local river. The study quantitatively investigated the problem starting with in-situ sampling. It was found that more biomass of AMC was at riffles with wider distribution than in pools. High current velocity (HCV) plays a negative role at the initial stage of attachment on the riverbed, but HCV aids the community proliferation after stable attachment. External disturbances such as rainfalls and discharges from dams or reservoirs would detach the periphyton depending on the intensity of turbulence in water. However, it was discovered that the flock of periphyton could be restored very quickly because it was not completely removed. Thus, in order to enhance self-purification by periphyton, a suitable configuration of the riverbed must be constructed, and occasional appropriate repair along the channels would improve the decontamination of the river.展开更多
Vascular plants possess an enzyme system that detoxifies cyanide by converting it to the amino acid asparagine. Hybrid willows (Salix matsudana Koidz×Salix alba L.) were exposed to cyanide to determine whether ...Vascular plants possess an enzyme system that detoxifies cyanide by converting it to the amino acid asparagine. Hybrid willows (Salix matsudana Koidz×Salix alba L.) were exposed to cyanide to determine whether willows can transport and metabolize this compound. Pre-rooted trees were grown in different environmental compartments, spiked or irrigated with potassium cyanide at 24.0±0.5℃. Cyanide in compartments, in air and in tissues of plants was analyzed spectrophotometrically. Results from this study indicated that large amounts of applied cyanide was removed from the systems during the presence of willows. Growing compartments of plants have a strong influence on the removal rates of cyanide. Little or no initial cyanide was detected in plant materials. Volatilization of cyanide was not occurring. Mass balance studies showed that applied cyanide was significantly metabolized during transport through willows cuttings. However, there was a clear difference between the metabolism rates of cyanide by willows exposed to different environmental compartments. The highest cyanide metabolism rate was found at the treatment with willows growing in hydroponic solution with a metabolism rate of 2.44 mgCN/(kg, d), followed by willows growing in sand with a value of 1.02 mgCN/(kg·d). The lowest metabolism rate had the willows growing in soils(0.43 mgCN/(kg·d). In conclusion, transport and metabolism of cyanide in plants is likely and phytoremediation of cyanide is a feasible option for cleaning soils and water contaminated with cyanide.展开更多
Iran, as a developing country has been facing rapid growth in the energy demanding sectors and needs to achieve essential elements of sustainable development. Environmental impact assessment of factories which emit ha...Iran, as a developing country has been facing rapid growth in the energy demanding sectors and needs to achieve essential elements of sustainable development. Environmental impact assessment of factories which emit hazardous gases such as HF would promise a fruitful future to achieve sustainable development. This study reveals an environmental impact assessment that has been carried out for an Aluminum Complex to be located in south of Iran. Application of Gaussian model showed that the highest concentration at the center of HF plume is 2.65 gr/sec; whereas the average wind speed is 9.1 Knots, the emission rate is 1.24 gr/sec, downwind distance 400 m and the atmospheric stability is in A class. For unstable atmospheric conditions the amount of HF emission comes to be one forth of Iran's national standard. It is also suggested that real-time monitoring of the pollutant particles and emissions, together with adapting proper mitigation plans and management skills, will lead to maximum efficiency with the least harmful environmental impacts.展开更多
Adaptive vegetation management is time-consuming and requires long-term colony monitoring to obtain reliable results. Although vegetation management has been widely adopted, the only method existing at present for eva...Adaptive vegetation management is time-consuming and requires long-term colony monitoring to obtain reliable results. Although vegetation management has been widely adopted, the only method existing at present for evaluating the habitat conditions under management involves observations over a long period of time. The presence of reactive oxygen species (ROS) has long been used as an indicator of environmen- tal stress in plants, and has recently been intensely studied. Among such ROS, hydrogen peroxide (H202) is relatively stable, and can be conveniently and accurately quantified. Thus, the quantification of plant H202 could be applied as a stress indicator for riparian and aquatic vegetation management approaches while evaluating the conditions of a plant species within a habitat. This study presents an approach for elucidating the applicability of H202 as a quantitative indicator of environmental stresses on plants, particularly for vegetation management. Submerged macrophytes and riparian species were studied under laboratory and field conditions (Lake Shinji, Saba River, Eno River, and Hii River in Japan) for H202 formation under various stress conditions. The results suggest that H202 can be conveniently applied as a stress indicator in environmental management.展开更多
Yellow mealworm larvae(YML;Tenebrio molitor) are considered as a valuable insect species for animal feed due to their high nutritional values and ability to grow under different substrates and rearing conditions. Adva...Yellow mealworm larvae(YML;Tenebrio molitor) are considered as a valuable insect species for animal feed due to their high nutritional values and ability to grow under different substrates and rearing conditions. Advances in the understanding of entomophagy and animal nutrition over the past decades have propelled research areas toward testing multiple aspects of YML to exploit them better as animal feed sources. This review aims to summarize various approaches that could be exploited to maximize the nutritional values of YML as an animal feed ingredient. In addition, YML has the potential to be used as an antimicrobial or bioactive agent to improve animal health and immune function in production animals. The dynamics of the nutritional profile of YML can be influenced by multiple factors and should be taken into account when attempting to optimize the nutrient contents of YML as an animal feed ingredient. Specifically, the use of novel land-based and aquatic feeding resources, probiotics, and the exploitation of larval gut microbiomes as novel strategies can assist to maximize the nutritional potential of YML. Selection of relevant feed supplies, optimization of ambient conditions, the introduction of novel genetic selection procedures, and implementation of effective post-harvest processing may be required in the future to commercialize mealworm production. Furthermore, the use of appropriate agricultural practices and technological improvements within the mealworm production sector should be aimed at achieving both economic and environmental sustainability. The issues highlighted in this review could pave the way for future approaches to improve the nutritional value of YML.展开更多
Over recent years, the population of Caspian cobra Naja oxiana has declined in its distribution range in Iran due to habitat destruction and overhunting. Consequently, their small and isolated populations in fragmente...Over recent years, the population of Caspian cobra Naja oxiana has declined in its distribution range in Iran due to habitat destruction and overhunting. Consequently, their small and isolated populations in fragmented landscapes are facing genetic and demographic threats. Evaluating the spatial distribution pattern of Naja oxiana, identifying core habitat patches and improving landscape connectivity among the patches have a significant role in the long-term survival of the species. This study predicts the spatial distribution map of the Caspian cobra considering the factors affecting the predictive power of the distribution models, including sampling bias in presence points, correct selection of background locations, and input model parameters. The sampling bias in presence points was removed using spatial filtering. Several models were run using 19 environmental variables that eventually led to the selection of the effective habitat variables and best MaxEnt distribution model. We also used an ensemble model(EM) of habitat suitability methods to predict the potential habitats of the species. Topographical roughness, shrublands, average annual precipitation, and sparse rangeland with a density of ≤ 20% had the most effect on the spatial distribution of Caspian cobra. The evaluation of models confirmed that the EM has more predictive performance than MaxEnt in predicting the distribution of Naja oxiana.展开更多
Environmental Impact Assessments (EIAs) are designed to evaluate all reasonably foreseeable environmental consequences of human activities. Appropriate governmental scientists traditionally produced EIAs for managemen...Environmental Impact Assessments (EIAs) are designed to evaluate all reasonably foreseeable environmental consequences of human activities. Appropriate governmental scientists traditionally produced EIAs for management agencies in many countries. However, many EIAs are now contracted out, often to the lowest bidder without due consideration of expertise. Others suffer from limited agency resources. Consequently, many EIAs have become insufficiently researched documents that draw heavily from previous EIAs while being rushed to completion to meet legislative deadlines or avoid delaying projects. Habitual treatment of topics often ignores recent scientific literature, perpetuating previous misconceptions and analytical flaws. Common problems in EIAs discussing wildlife include: a focus on lethal takes, with little consideration of non-lethal impacts or habitat degradation;a general dismissal of the possibility that non-significant (to the resource) impacts can, when combined, become significant;and the assumption that behavioral habituation in animals represents an end of impact. Incentive to break the cycle is somewhat lacking in this now often commercially competitive environment, where contracts are increasingly awarded by industry, generating potential conflict of interest. We believe investment in thorough, impartially written, scientifically-based and up-to-date EIAs is important for appropriately representing and managing ecosystems and their resources and avoiding potentially expensive litigation.展开更多
Human exposure to toxic metals is on the increase especially in the developing world;this is compounded by the almost unavoidable application of the metals domestically and industrially and their implication in severa...Human exposure to toxic metals is on the increase especially in the developing world;this is compounded by the almost unavoidable application of the metals domestically and industrially and their implication in several genetic defects, aging and some chronic illnesses including Autism Spectrum Disorders (ASD). This study investigated the concentration of toxic metals (Pb and V) and micro-essential elements (Cu and Se) in children with ASD and controls in Nigeria towards establishing their possible associations with the aetiopathogenesis of ASD. Eight children clinically diagnosed by Paediatric Neurologist and Child Psychiatrist for ASD using DMS-IV and fifteen apparently healthy children (age range 2 - 12 years) were recruited as cases and controls respectively. Plasma levels of Pb, V, Cu and Se were analyzed using Induction ICP-MS. Results were analyzed using students t-test. The mean plasma lead and vanadium levels were (7.92 ± 1.30 μg/dl;1.07 ± 0.22 μg/dl) and (6.83 ± 0.72 μg/dl;2.59 ± 0.48 μg/dl) in children with ASD and in controls respectively. The result showed that blood lead level in ASD was slightly increased but not significant when compared with control (p < 0.433). On the other hand, plasma vanadium concentration in ASD was significantly reduced (1.07 ± 0.22 μg/dl) when compared with control (2.59 ± 0.48 μg/dl) (P < 0.038). Mean plasma copper was similar in all participants (1.98 ± 0.13, 2.23 ± 0.12) but selenium concentrations were significantly reduced (0.37 ± 0.05 mg/L;0.57 ± 0.02 mg/L) in ASD relative to controls respectively. Given the physiological functions of vanadium and selenium, the observed reduced levels of the two elements in children with ASD may account for the speech and other neurological dysfunctions of the brain in ASD.展开更多
基金supported by the China National Natural Science Foundation(No.2212260192043301+1 种基金91843301)the Science and Technology Commission of Shanghai Municipality(20ZR1404300 and 212307128)
文摘The ever-increasing complexity of environmental pollutants urgently warrants the development of new detection technologies.Sensors based on the optical properties of hydrogels enabling fast and easy in situ detection are attracting increasing attention.In this paper,the data from 138 papers about different optical hydrogels(OHs)are extracted for statistical analysis.The detection performance and potential of various types of OHs in different environmental pollutant detection scenarios were evaluated and compared to those obtained using the standard detection method.Based on this analysis,the target recognition and sensing mechanisms of two main types of OHs are reviewed and discussed:photonic crystal hydrogels(PCHs)and fluorescent hydrogels(FHs).For PCHs,the environmental stimulus response,target receptors,inverse opal structures,and molecular imprinting techniques related to PCHs are reviewed and summarized.Furthermore,the different types of fluorophores(i.e.,compound probes,biomacromolecules,quantum dots,and luminescent microbes)of FHs are discussed.Finally,the potential academic research directions to address the challenges of applying and developing OHs in environmental sensing are proposed,including the fusion of various OHs,introduction of the latest technologies in various fields to the construction of OHs,and development of multifunctional sensor arrays.
基金The National Natural Science Foundation of China (No. 50578053) and the Harbin Young Scientist Fund (No. 2003AFXXJ025)
文摘Extracellular polymeric substances (EPS) are the predominant constituents of activated sludge and represent up to 80% of the mass of activated sludge. They play a crucial role in the flocculation, settling and dewatering of activated sludge. Furthermore, EPS also show great efficiency in binding heavy metals. So EPS are key factors influencing reduction in sludge volume and mass, as well as activity and utilization of sludge. EPS are of considerable environmental interest and hundreds of articles on EPS have been published abroad, while information on EPS in China is limited. In this paper, results of over 60 publications related to constituents and characteristics of EPS and their influences on flocculation, settling and dewatering of sludge are compiled and analyzed. Metal-binding ability of EPS is also discussed, together with a brief consideration of possible research interests in the future.
基金Project supported by the National Key Basic Research Support Foundation of China (No. G1998040800).
文摘Pedogenic carbonates, found extensively in arid and semiarid regions, are important in revealing regional climatic and environmental changes as well as the carbon cycle. In addition, stable carbon and oxygen isotopic compositions of pedogenic carbonates have been used to rebuild paleoecology (biomass and vegetation) and to estimate paleotemperature and paleoprecipitation during past geological time. By utilizing the stable carbon and oxygen isotopic compositions (δ13C and (δ18O) of secondary nodules in Ustic Vertisols, this study looked into the climatic and environmental changes in the dry valleys of the Yuanmou Basin, Yunnan Province, in southwestern China. The results showed that during the early Holocene, a warm-humid or hot-humid climate existed in the Yuanmou Basin, but since then fluctuations in climate have occurred, with a dry climate prevailing. A highly significant correlation (r = 0.92, n = 9) between δ13C and δ18O values of carbonates illustrated that there had been a continual shifting between cold-humid and warm-dry climates in southwestern China including the Yuanmou Basin since the early Holocene.
基金ThisresearchprojectwasgrantedjointlybytheStartingFundsforBack From AbroadDoctorssponsoredbytheQingdaoUni versityandtheNationalOu
文摘The Swan Lake Inlet, the State Primary Wildlife Protection Area, is a lagoon\|inlet system located in the Rongcheng Bay, Shandong Peninsula, China. It has been undergoing development for aquaculture and tourism. In the summer of 1999, a study on the environment of the Swan Lake Inlet was carried out. The concentrations of the major elements and trace elements Fe, Al, Pb, Zn, Cd, Cu, Cr, Mn and P have been measured by ICP\|AES and graphite furnace atomic adsorption spectrometry. The sources and distribution of the elements in the Swan Lake Inlet have been discussed. It is concluded that the Swan Lake Inlet has not been subjected to significant environmental pollution.\; The chemical results show that the dissolved oxygen (DO) contents are generally normal. At some locations DO solubility appears to be >100%. The BOD\-5 (five\|day biochemical oxygen demand) values are generally <4 mg/L and COD (chemical oxygen demand) 3~4 mg/L. The seawater N, P and Si contents are lower than the Class I water type specified by the Chinese National Standard of Water Quality. The low nutrient distribution reflects little discharge from land, therefore lacking of nutrient supply.
文摘The metamorphic belt in central Jiangxi, located in the compound terrain within the Cathaysia, Yangtze Block and Caledonian fold zone of South China, is composed dominantly of meta-argillo-arenaceous rocks, with minor amphibolite. These rocks underwent amphibolite-facies metamorphism. The meta-argillo-arenaceous rocks show large variations in major element composition, but have similar REE patterns and trace element composition, incompatible element and LIE enrichments [high Th/Sc ({0.57}-{3.59}), La/Sc ({1.46}-{12.4}), La/Yb ({5.84}-{19.0})] and variable Th/U ratios, with ΣREE=129-296μg/g, δEu={0.51}-{0.86}, and (La/Yb)-N={3.95}-{12.9}. The Nd isotopic model ages t-{DM} of these rocks vary from 1597 to 2124 Ma. Their {}+{143}Nd/+{144}Nd values are low [ε-{Nd}(0)={-11.4} to {-15.8}]. Some conclusions have been drawn as follows: (1) The metamorphic rocks in central Jiangxi Province are likely formed in a tectonic environment at the passive continental margin of the Cathaysia massif. (2) The metamorphosed argillo-arenaceous rocks are composed dominantly of upper crustal-source rocks (Al- and K|rich granitic or/and sedimentary rocks of Early Proterozoic), which experienced good sorting, slow deposition and more intense chemical weathering. (3) According to the whole-rock Sm-Nd isochron ages (1113±49 to 1199±26 Ma) of plagioclase-amphibole (schist) and Nd isotopic model age t-{DM} (1597-2124 Ma) of meta-argillo-arenaceous rocks, the metamorphic belt in central Jiangxi Province was formed during the Middle Proterozoic (1100-1600 Ma).
基金the National Science Foundation of China(41925031,41991315,and 41521003).
文摘The coronavirus disease 2019(COVID-19)pandemic is challenging the current public health emergency response systems(PHERSs)of many countries.Although environmental factors,such as those influencing the survival of viruses and their transmission between species including humans,play important roles in PHERSs,little attention has been given to these factors.This study describes and elucidates the roles of environmental factors in future PHERSs.To improve countries’capability to respond to public health emergencies associated with viral infections such as the COVID-19 pandemic,a number of environmental factors should be considered before,during,and after the responses to such emergencies.More specifically,to prevent pandemic outbreaks,we should strengthen environmental and wildlife protection,conduct detailed viral surveillance in animals and hotspots,and improve early-warning systems.During the pandemic,we must study the impacts of environmental factors on viral behaviors,develop control measures to minimize secondary environmental risks,and conduct timely assessments of viral risks and secondary environmental effects with a view to reducing the impacts of the pandemic on human health and on ecosystems.After the pandemic,we should further strengthen surveillance for viruses and the prevention of viral spread,maintain control measures for minimizing secondary environmental risks,develop our capability to scientifically predict pandemics and resurgences,and prepare for the next unexpected resurgence.Meanwhile,we should restore the normal life and production of the public based on the“One Health”concept,that views global human and environmental health as inextricably linked.Our recommendations are essential for improving nations’capability to respond to global public health emergencies.
基金This research was supported by the Natural Science Foundation of China(Grant No.41907188)Natural Science Foundation of Shaanxi Province,China(Grant No.2019JQ-386)the China Postdoctoral Science Foundation(Grant No.2019M653658).
文摘Summer and winter campaigns for the chemical compositions and sources of nonmethane hydrocarbons(NMHCs)and oxygenated volatile organic compounds(OVOCs)were conducted in Xi’an.Data from 57 photochemical assessment monitoring stations for NMHCs and 20 OVOC species were analyzed.Significant seasonal differences were noted for total VOC(TVOC,NMHCs and OVOCs)concentrations and compositions.The campaign-average TVOC concentrations in winter(85.3±60.6 ppbv)were almost twice those in summer(47.2±31.6 ppbv).Alkanes and OVOCs were the most abundant category in winter and summer,respectively.NMHCs,but not OVOCs,had significantly higher levels on weekends than on weekdays.Total ozone formation potential was higher in summer than in winter(by 50%)because of the high concentrations of alkenes(particularly isoprene),high temperature,and high solar radiation levels in summer.The Hybrid Environmental Receptor Model(HERM)was used to conduct source apportionment for atmospheric TVOCs in winter and summer,with excellent accuracy.HERM demonstrated its suitability in a situation where only partial source profile data were available.The HERM results indicated significantly different seasonal source contributions to TVOCs in Xi’an.In particular,coal and biomass burning had contributions greater than half in winter(53.4%),whereas traffic sources were prevalent in summer(53.1%).This study’s results highlight the need for targeted and adjustable VOC control measures that account for seasonal differences in Xi’an;such measures should target not only the severe problem with VOC pollution but also the problem of consequent secondary pollution(e.g.,from ozone and secondary organic aerosols).
文摘The study evaluated the sources and controlling factors of the groundwater contaminants in an agroeconomic region of Lower Ganga Basin using principal component analysis(PCA),multivariable linear regressions(MLR),correlation analysis,and hierarchical cluster analysis,and evaluated the public health risks using the Latin Hypercube Sampling,goodness-of-fit statistics,Monte Carlo simulation and Sobol sensitivity analysis based on the 1000 samples collected in two sampling cycles(N=1000).The study reveals that the dissolution of fluoride-bearing minerals and semi-arid climate regulate the fluoride concentrations(0.10–18.25 mg/L)in groundwater.Extensive application of inorganic nitrogenous fertilizers and livestock manure mainly contributed to elevated nitrate levels(up to 435.0 mg/L)in groundwater.The health risks analysis indicates that fluoride exposure is more prevalent in the residents of each age group than the nitrate and both contaminants exhibited higher non-carcinogenic health risks on the infant and child(minor)age groups compared to adolescents and adults.Based on the cokriging interpolation mapping,the minor residents of 17.88%–23.15%of the total area(4545.0 km^(2))are vulnerable to methemoglobinemia whereas the residents of all age-groups in 38.47%–44.45%of the total area are susceptible to mild to severe dental/skeletal fluorosis owing to consumption of untreated nitrate and fluoride enriched groundwater.The Sobol sensitivity indices revealed contaminant levels,groundwater intake rate and their collective effects are the most influential factors to pose potential health risks on the residents.Artificial recharge and rainwater harvesting practices should be adopted to improve the groundwater quality and the residents are advised to drink purified groundwater.
基金Under the auspices of the key project of Shandong Provincial EnvironmentalProtectionBureau (No .2003447)
文摘Modern logistics is a new industry during the construction of national economy. Based on analyzing the environmental problem that was led by the limitation of the strategy during enacting the program of the modern logistics, SEA for modern logistics was implemented. In this paper, procedure and indicator system in the SEA are constructed, and Environmental Check List to identify environmental impact factors of SEA for modern logistics is established. And a conception that indicates friendly degree of logistics system with resources and environment, degree of green, is introduced. With the example of modern logistics program of Dalian in China, two methods are applied, AHP and Fuzzy Comprehensive Evaluation Method, in the implement of SEA for modern logistics development. It is concluded that degree of green of modern logistics in Dalian is high. However, several important factors should be paid much attention to in the SEA for modern logistics as well as in the formulation and implement of modern logistics in Dalian.
基金Supported by the National Science Foundation of China(Nos.32071573,41877544)the Science and Technology Service Network Initiative of Chinese Academy of Sciences(No.KFJ-STS-QYZD-2021-01-002)the Science and Technology Achievement Transformation Foundation of Inner Mongolia Autonomous Region(No.2021CG0013)。
文摘Cyanobacteria can accumulate as a heavy biomass on the leeward side of large eutrophic lakes,posing a potential threat to public health.The mitigating capacity of three flocculants and their potential impacts on the major environmental features of water and sediments was evaluated.Results indicate that polyaluminum chloride(PAC)and ferric chloride(FeCl)are efficient flocculants that can rapidly mitigate cyanobacterial blooms with chlorophyll-a concentrations higher tnan 1500 ug/L within 15 min.In comparison,cationic starch with chitosan could only treat cyanobacterial blooms in chlorophyll-a concentrations of less than 200μg/L.The addition of FeClcaused a decline in the pH value,while dissolved oxygen in the water column dropped to 2 mg/L during cationic starch with chitosan treatment for a high cyanobacterial biomass group.Thus,a combination of flocculants and oxygenators should be considered when treating high-concentration cyanobacterial blooms for emergency purposes.Additionally,the cell lysis of cyanobacteria caused by cationic starch with chitosan can result in an increase in total dissolved phosphorus and total dissolved nitrogen.Furthermore,the high accumlation of nutrients in sediments after the settling of cyanobacteria can cause high internal phosphorus pollution.The increase in the total organic carbon of the sediments can threaten lake restoration achieved by planting submerged macrophytes.
文摘In this study, salting-out assisted liquid-liquid extraction combined with high performance liquid chromatography diode array detector (SALLE-HPLC-DAD) method was developed and validated for simultaneous analysis of carbaryl, atrazine, propazine, chlorothalonil, dimethametryn and terbutryn in environmental water samples. Parameters affecting the extraction efficiency such as type and volume of extraction solvent, sample volume, salt type and amount, centrifugation speed and time, and sample pH were optimized. Under the optimum extraction conditions the method was linear over the range of 10 - 100 μg/L (carbaryl), 8 - 100 μg/L (atarzine), 7 - 100 μg/L (propazine) and 9 - 100 μg/L (chlorothalonil, terbutryn and dimethametryn) with correlation coefficients (R2) between 0.99 and 0.999. Limits of detection and quantification ranged from 2.0 to 2.8 μg/L and 6.7 to 9.5 μg/L, respectively. The extraction recoveries obtained for ground, lake and river waters were in a range of 75.5% to 106.6%, with the intra-day and inter-day relative standard deviation lower than 3.4% for all the target analytes. All of the target analytes were not detected in these samples. Therefore, the proposed SALLE-HPLC-DAD method is simple, rapid, cheap and environmentally friendly for the determination of the aforementioned herbicides, insecticide and fungicide residues in environmental water samples.
文摘The coronavirus disease 2019(COVID-19)pandemic,caused by the novel virus severe acute respiratory syndrome coronavirus 2(SARS-CoV-2),began in December 2019 in China and has led to a global public health emergency.Previously,it was known as 2019-nCoV and caused disease mainly through respiratory pathways.The COVID-19 outbreak is ranked third globally as the most highly pathogenic disease of the twenty-first century,after the outbreak of SARS-CoV and Middle East respiratory syndrome in 2002 and 2012,respectively.Clinical,laboratory,and diagnostic methodology have been demonstrated in some observational studies.No systematic reviews on COVID-19 have been published regarding the integration of COVID-19 outbreaks(monitoring,fate and treatment)with environmental and human health perspectives.Accordingly,this review systematically addresses environmental aspects of COVID-19 outbreak such as the origin of SARS-CoV-2,epidemiological characteristics,diagnostic methodology,treatment options and technological advancement for the prevention of COVID-19 outbreaks.Finally,we integrate COVID-19 outbreaks(monitoring,fate and treatment)with environmental and human health perspectives.We believe that this review will help to understand the SARS-CoV-2 outbreak as a multipurpose document,not only for the scientific community but also for global citizens.Countries should adopt emergency preparedness such as prepare human resources,infrastructure and facilities to treat severe COVID-19 as the virus spreads rapidly globally.
文摘The present paper deals with the behavior of the Attached Microbial Community (AMC) for water self-purification at different riverbeds in a typical local river. The study quantitatively investigated the problem starting with in-situ sampling. It was found that more biomass of AMC was at riffles with wider distribution than in pools. High current velocity (HCV) plays a negative role at the initial stage of attachment on the riverbed, but HCV aids the community proliferation after stable attachment. External disturbances such as rainfalls and discharges from dams or reservoirs would detach the periphyton depending on the intensity of turbulence in water. However, it was discovered that the flock of periphyton could be restored very quickly because it was not completely removed. Thus, in order to enhance self-purification by periphyton, a suitable configuration of the riverbed must be constructed, and occasional appropriate repair along the channels would improve the decontamination of the river.
文摘Vascular plants possess an enzyme system that detoxifies cyanide by converting it to the amino acid asparagine. Hybrid willows (Salix matsudana Koidz×Salix alba L.) were exposed to cyanide to determine whether willows can transport and metabolize this compound. Pre-rooted trees were grown in different environmental compartments, spiked or irrigated with potassium cyanide at 24.0±0.5℃. Cyanide in compartments, in air and in tissues of plants was analyzed spectrophotometrically. Results from this study indicated that large amounts of applied cyanide was removed from the systems during the presence of willows. Growing compartments of plants have a strong influence on the removal rates of cyanide. Little or no initial cyanide was detected in plant materials. Volatilization of cyanide was not occurring. Mass balance studies showed that applied cyanide was significantly metabolized during transport through willows cuttings. However, there was a clear difference between the metabolism rates of cyanide by willows exposed to different environmental compartments. The highest cyanide metabolism rate was found at the treatment with willows growing in hydroponic solution with a metabolism rate of 2.44 mgCN/(kg, d), followed by willows growing in sand with a value of 1.02 mgCN/(kg·d). The lowest metabolism rate had the willows growing in soils(0.43 mgCN/(kg·d). In conclusion, transport and metabolism of cyanide in plants is likely and phytoremediation of cyanide is a feasible option for cleaning soils and water contaminated with cyanide.
文摘Iran, as a developing country has been facing rapid growth in the energy demanding sectors and needs to achieve essential elements of sustainable development. Environmental impact assessment of factories which emit hazardous gases such as HF would promise a fruitful future to achieve sustainable development. This study reveals an environmental impact assessment that has been carried out for an Aluminum Complex to be located in south of Iran. Application of Gaussian model showed that the highest concentration at the center of HF plume is 2.65 gr/sec; whereas the average wind speed is 9.1 Knots, the emission rate is 1.24 gr/sec, downwind distance 400 m and the atmospheric stability is in A class. For unstable atmospheric conditions the amount of HF emission comes to be one forth of Iran's national standard. It is also suggested that real-time monitoring of the pollutant particles and emissions, together with adapting proper mitigation plans and management skills, will lead to maximum efficiency with the least harmful environmental impacts.
基金financially supported by grant-in-aid from the Japan Society for the Promotion of Science Scientific Research (15H04045)+5 种基金Development Grant for River Management Technology from the Ministry of Land Infrastructure Transportation and Tourism JapanRiver Fund from the River Foundation of Japan and Watershed Ecology Research Group of WEC
文摘Adaptive vegetation management is time-consuming and requires long-term colony monitoring to obtain reliable results. Although vegetation management has been widely adopted, the only method existing at present for evaluating the habitat conditions under management involves observations over a long period of time. The presence of reactive oxygen species (ROS) has long been used as an indicator of environmen- tal stress in plants, and has recently been intensely studied. Among such ROS, hydrogen peroxide (H202) is relatively stable, and can be conveniently and accurately quantified. Thus, the quantification of plant H202 could be applied as a stress indicator for riparian and aquatic vegetation management approaches while evaluating the conditions of a plant species within a habitat. This study presents an approach for elucidating the applicability of H202 as a quantitative indicator of environmental stresses on plants, particularly for vegetation management. Submerged macrophytes and riparian species were studied under laboratory and field conditions (Lake Shinji, Saba River, Eno River, and Hii River in Japan) for H202 formation under various stress conditions. The results suggest that H202 can be conveniently applied as a stress indicator in environmental management.
基金supported by research grants from Regionalt Forskningsfond (RFF) Trondelag (In FeedProject number: 309859),where Nord University is the project leading institution,and Gullimunn AS and Mære Landbruksskole are project partnerssupported by the CEER project (Project number: 2021/10345) funded by the Norwegian Agency for International Cooperation and Quality Enhancement in Higher Education (HK-dir) under the Norwegian Partnership Program for Global Academic Cooperation (NORPART ) with support from the Norwegian Ministry of Education and Research (MER)。
文摘Yellow mealworm larvae(YML;Tenebrio molitor) are considered as a valuable insect species for animal feed due to their high nutritional values and ability to grow under different substrates and rearing conditions. Advances in the understanding of entomophagy and animal nutrition over the past decades have propelled research areas toward testing multiple aspects of YML to exploit them better as animal feed sources. This review aims to summarize various approaches that could be exploited to maximize the nutritional values of YML as an animal feed ingredient. In addition, YML has the potential to be used as an antimicrobial or bioactive agent to improve animal health and immune function in production animals. The dynamics of the nutritional profile of YML can be influenced by multiple factors and should be taken into account when attempting to optimize the nutrient contents of YML as an animal feed ingredient. Specifically, the use of novel land-based and aquatic feeding resources, probiotics, and the exploitation of larval gut microbiomes as novel strategies can assist to maximize the nutritional potential of YML. Selection of relevant feed supplies, optimization of ambient conditions, the introduction of novel genetic selection procedures, and implementation of effective post-harvest processing may be required in the future to commercialize mealworm production. Furthermore, the use of appropriate agricultural practices and technological improvements within the mealworm production sector should be aimed at achieving both economic and environmental sustainability. The issues highlighted in this review could pave the way for future approaches to improve the nutritional value of YML.
文摘Over recent years, the population of Caspian cobra Naja oxiana has declined in its distribution range in Iran due to habitat destruction and overhunting. Consequently, their small and isolated populations in fragmented landscapes are facing genetic and demographic threats. Evaluating the spatial distribution pattern of Naja oxiana, identifying core habitat patches and improving landscape connectivity among the patches have a significant role in the long-term survival of the species. This study predicts the spatial distribution map of the Caspian cobra considering the factors affecting the predictive power of the distribution models, including sampling bias in presence points, correct selection of background locations, and input model parameters. The sampling bias in presence points was removed using spatial filtering. Several models were run using 19 environmental variables that eventually led to the selection of the effective habitat variables and best MaxEnt distribution model. We also used an ensemble model(EM) of habitat suitability methods to predict the potential habitats of the species. Topographical roughness, shrublands, average annual precipitation, and sparse rangeland with a density of ≤ 20% had the most effect on the spatial distribution of Caspian cobra. The evaluation of models confirmed that the EM has more predictive performance than MaxEnt in predicting the distribution of Naja oxiana.
文摘Environmental Impact Assessments (EIAs) are designed to evaluate all reasonably foreseeable environmental consequences of human activities. Appropriate governmental scientists traditionally produced EIAs for management agencies in many countries. However, many EIAs are now contracted out, often to the lowest bidder without due consideration of expertise. Others suffer from limited agency resources. Consequently, many EIAs have become insufficiently researched documents that draw heavily from previous EIAs while being rushed to completion to meet legislative deadlines or avoid delaying projects. Habitual treatment of topics often ignores recent scientific literature, perpetuating previous misconceptions and analytical flaws. Common problems in EIAs discussing wildlife include: a focus on lethal takes, with little consideration of non-lethal impacts or habitat degradation;a general dismissal of the possibility that non-significant (to the resource) impacts can, when combined, become significant;and the assumption that behavioral habituation in animals represents an end of impact. Incentive to break the cycle is somewhat lacking in this now often commercially competitive environment, where contracts are increasingly awarded by industry, generating potential conflict of interest. We believe investment in thorough, impartially written, scientifically-based and up-to-date EIAs is important for appropriately representing and managing ecosystems and their resources and avoiding potentially expensive litigation.
文摘Human exposure to toxic metals is on the increase especially in the developing world;this is compounded by the almost unavoidable application of the metals domestically and industrially and their implication in several genetic defects, aging and some chronic illnesses including Autism Spectrum Disorders (ASD). This study investigated the concentration of toxic metals (Pb and V) and micro-essential elements (Cu and Se) in children with ASD and controls in Nigeria towards establishing their possible associations with the aetiopathogenesis of ASD. Eight children clinically diagnosed by Paediatric Neurologist and Child Psychiatrist for ASD using DMS-IV and fifteen apparently healthy children (age range 2 - 12 years) were recruited as cases and controls respectively. Plasma levels of Pb, V, Cu and Se were analyzed using Induction ICP-MS. Results were analyzed using students t-test. The mean plasma lead and vanadium levels were (7.92 ± 1.30 μg/dl;1.07 ± 0.22 μg/dl) and (6.83 ± 0.72 μg/dl;2.59 ± 0.48 μg/dl) in children with ASD and in controls respectively. The result showed that blood lead level in ASD was slightly increased but not significant when compared with control (p < 0.433). On the other hand, plasma vanadium concentration in ASD was significantly reduced (1.07 ± 0.22 μg/dl) when compared with control (2.59 ± 0.48 μg/dl) (P < 0.038). Mean plasma copper was similar in all participants (1.98 ± 0.13, 2.23 ± 0.12) but selenium concentrations were significantly reduced (0.37 ± 0.05 mg/L;0.57 ± 0.02 mg/L) in ASD relative to controls respectively. Given the physiological functions of vanadium and selenium, the observed reduced levels of the two elements in children with ASD may account for the speech and other neurological dysfunctions of the brain in ASD.