期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Overview of wall probes for erosion and deposition studies in the TEXTOR tokamak 被引量:2
1
作者 M.Rubel S.Brezinsek +11 位作者 J.W.Coenen A.Huber A.Kirschner A.Kreter P.Petersson V.Philipps A.Pospieszczyk B.Schweer G.Sergienko T.Tanabe Y.Ueda P.Wienhold 《Matter and Radiation at Extremes》 SCIE EI CAS 2017年第3期87-104,共18页
An overview of diagnostic tools e test limiters and collector probes e used over the years for material migration studies in the TEXTOR tokamak is presented.Probe transfer systems are shown and their technical capabil... An overview of diagnostic tools e test limiters and collector probes e used over the years for material migration studies in the TEXTOR tokamak is presented.Probe transfer systems are shown and their technical capabilities are described.This is accompanied by a brief pre-sentation of selected results and conclusions from the research on material erosion e deposition processes including tests of candidate materials(e.g.W,Mo,carbon-based composites)for plasma-facing components in controlled fusion devices.The use of tracer techniques and methods for analysis of materials retrieved from the tokamak are summarized.The impact of research on the reactor wall technology is addressed. 展开更多
关键词 Erosion-deposition Material migration Deuterium retention Carbon TUNGSTEN TEXTOR
下载PDF
Optimizing Time-Spectral Solution of Initial-Value Problems
2
作者 J. Scheffel K. Lindvall 《American Journal of Computational Mathematics》 2018年第1期7-26,共20页
Time-spectral solution of ordinary and partial differential equations is often regarded as an inefficient approach. The associated extension of the time domain, as compared to finite difference methods, is believed to... Time-spectral solution of ordinary and partial differential equations is often regarded as an inefficient approach. The associated extension of the time domain, as compared to finite difference methods, is believed to result in uncomfortably many numerical operations and high memory requirements. It is shown in this work that performance is substantially enhanced by the introduction of algorithms for temporal and spatial subdomains in combination with sparse matrix methods. The accuracy and efficiency of the recently developed time spectral, generalized weighted residual method (GWRM) are compared to that of the explicit Lax-Wendroff and implicit Crank-Nicolson methods. Three initial-value PDEs are employed as model problems;the 1D Burger equation, a forced 1D wave equation and a coupled system of 14 linearized ideal magnetohydrodynamic (MHD) equations. It is found that the GWRM is more efficient than the time-stepping methods at high accuracies. The advantageous scalings Nt<sup style="margin-left:-6px;">1.0Ns<sup style="margin-left:-6px;">1.43 and Nt<sup style="margin-left:-6px;">0.0Ns<sup style="margin-left:-6px;">1.08 were obtained for CPU time and memory requirements, respectively, with Nt and Ns denoting the number of temporal and spatial subdomains. For time-averaged solution of the two-time-scales forced wave equation, GWRM performance exceeds that of the finite difference methods by an order of magnitude both in terms of CPU time and memory requirement. Favorable subdomain scaling is demonstrated for the MHD equations, indicating a potential for efficient solution of advanced initial-value problems in, for example, fluid mechanics and MHD. 展开更多
关键词 Time-Spectral SPECTRAL Method GWRM CHEBYSHEV POLYNOMIAL Initial-Value Fluid MECHANICS MHD
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部