期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Research on High Pressure Gas Injection As a Method of Fueling, Disruption Mitigation and Plasma Termination for Future Tokamak Reactors
1
作者 宋云涛 S.Nishio 《Plasma Science and Technology》 SCIE EI CAS CSCD 2005年第5期3057-3061,共5页
High-pressure gas injection has proved to be an effective disruption mitigation tech- nique in DIII-D tokamak experiments. If the method can be applied in future tokamak reactors not only for disruption mitigation but... High-pressure gas injection has proved to be an effective disruption mitigation tech- nique in DIII-D tokamak experiments. If the method can be applied in future tokamak reactors not only for disruption mitigation but also for plasma termination and fueling, it will have an attractive advantage over the pellet and liquid injection from the viewpoint of economy and engineering design. In order to investigate the feasibility of this option, a study has been carried out with relevant parameters for conveying tubes of different geometrical sizes and for different gases. These parameters include pressure drop, lagger time after the valve's opening, gas diffusion in an ultra-high vacuum condition, and particle number contour. 展开更多
关键词 tokamak reactor disruption mitigation FUELING gas injection
下载PDF
Buckling Analysis of TF Coil Inner Leg for Central Solenoidless Tokamak 被引量:1
2
作者 宋云涛 杨庆喜 Satoshi NISHIO 《Plasma Science and Technology》 SCIE EI CAS CSCD 2006年第4期468-472,共5页
The central post is one of the critical components for the low aspect ratio tokamak, which endures not only a tremendous ohmic heating because it carries a rather high current, but also a large neutron heating and irr... The central post is one of the critical components for the low aspect ratio tokamak, which endures not only a tremendous ohmic heating because it carries a rather high current, but also a large neutron heating and irradiation owing to the plasma operation. The DS copper alloy Glidcop AL-25[8] was chosen as the conductor material for its adequate mechanical properties and physics properties. The central post has a cylindrical structure with lots of cooling channels. The length of the central post for the next generation of nuclear fusion spherical tokamaks will be more than 10 m or 20 m. The structural stability is very crucial. When the applied load is larger than the structure critical buckling load, the device will lose its stability and collapse. In order to calculate the critical buckling load, a 1/6-segment finite element model was used and the force acting on the central post was simulated. The results showed that the vertical compressive stresses mainly affect the stability of the central post. The linear buckling analysis results with finite element method based on small deformation theory were given in this paper. The relation curves and functions for buckling factor, depending on the different lengths and the radius of the central post, the diameter of cooling channel and the maximum allowable current density, were also shown. 展开更多
关键词 low aspect ratio tokamak toroidal field coil central post buckling analysis
下载PDF
A Consideration on Increasing Current Density in Normal Conducting Toroidal Field Coil for Spherical Tokamak Power Plant
3
作者 宋云涛 西尾敏 《Plasma Science and Technology》 SCIE EI CAS CSCD 2005年第2期2731-2733,共3页
The center post is the most critical component as an inboard part of the toroidal field coil for the low aspect ratio tokamak. During the discharge it endures not only a tremendous ohmic heating owing to its carrying ... The center post is the most critical component as an inboard part of the toroidal field coil for the low aspect ratio tokamak. During the discharge it endures not only a tremendous ohmic heating owing to its carrying a rather high current but also a large nuclear heating and irradiation owing to the plasma operation. All the severe operating conditions, including the structure stress intensity and the stability of the structure, largely limit the maximum allowable current density. But in order to contain a very high dense plasma, it is hoped that the fusion power plant system can operate with a much high maximum magnetic field BT ≥12 T-15 T in the center post. A new method is presented in this paper to improve the maximum magnetic field up to 17 T and to investigate the possibility of the normal conducting center post to be used in the future fusion tokamak power plant. 展开更多
关键词 low aspect ratio tokamak power plant toroidal field coil center post high magnetic field
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部