Neighborhood gardens serve as sensitive sites for human microbial encounters,with phyllosphere microbes directly impacting our respiratory health.Yet,our understanding remains limited on how factors like season,garden...Neighborhood gardens serve as sensitive sites for human microbial encounters,with phyllosphere microbes directly impacting our respiratory health.Yet,our understanding remains limited on how factors like season,garden age,and land use shape the risk of respiratory diseases(RDs)tied to these garden microbes.Here we examined the microbial communities within the phyllosphere of 72 neighborhood gardens across Shanghai,spanning different seasons(warm and cold),garden ages(old and young),and locales(urban and rural).We found a reduced microbial diversity during the cold season,except for Gammaproteobacteria which exhibited an inverse trend.While land use influenced the microbial composition,urban and rural gardens had strikingly similar microbial profiles.Alarmingly,young gardens in the cold season hosted a substantial proportion of RDs-associated species,pointing towards increased respiratory inflammation risks.In essence,while newer gardens during colder periods show a decline in microbial diversity,they have an increased presence of RDs-associated microbes,potentially escalating respiratory disease prevalence.This underscores the pivotal role the garden age plays in enhancing both urban microbial diversity and respiratory health.展开更多
基金supported by the Natural Science Foundation of China(Project number:32371843)the Science and Technology Commission of Shanghai Municipality(Project number:22230713300).
文摘Neighborhood gardens serve as sensitive sites for human microbial encounters,with phyllosphere microbes directly impacting our respiratory health.Yet,our understanding remains limited on how factors like season,garden age,and land use shape the risk of respiratory diseases(RDs)tied to these garden microbes.Here we examined the microbial communities within the phyllosphere of 72 neighborhood gardens across Shanghai,spanning different seasons(warm and cold),garden ages(old and young),and locales(urban and rural).We found a reduced microbial diversity during the cold season,except for Gammaproteobacteria which exhibited an inverse trend.While land use influenced the microbial composition,urban and rural gardens had strikingly similar microbial profiles.Alarmingly,young gardens in the cold season hosted a substantial proportion of RDs-associated species,pointing towards increased respiratory inflammation risks.In essence,while newer gardens during colder periods show a decline in microbial diversity,they have an increased presence of RDs-associated microbes,potentially escalating respiratory disease prevalence.This underscores the pivotal role the garden age plays in enhancing both urban microbial diversity and respiratory health.